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Reconfigurable Neuromorphic Computing: Materials,
Devices, and Integration

Minyi Xu, Xinrui Chen, Yehao Guo, Yang Wang, Dong Qiu, Xinchuan Du, Yi Cui,*
Xianfu Wang,* and Jie Xiong*

Neuromorphic computing has been attracting ever-increasing attention due
to superior energy efficiency, with great promise to promote the next wave of
artificial general intelligence in the post-Moore era. Current approaches are,
however, broadly designed for stationary and unitary assignments, thus
encountering reluctant interconnections, power consumption, and
data-intensive computing in that domain. Reconfigurable neuromorphic
computing, an on-demand paradigm inspired by the inherent
programmability of brain, can maximally reallocate finite resources to perform
the proliferation of reproducibly brain-inspired functions, highlighting a
disruptive framework for bridging the gap between different primitives.
Although relevant research has flourished in diverse materials and devices
with novel mechanisms and architectures, a precise overview remains blank
and urgently desirable. Herein, the recent strides along this pursuit are
systematically reviewed from material, device, and integration perspectives.
At the material and device level, one comprehensively conclude the dominant
mechanisms for reconfigurability, categorized into ion migration, carrier
migration, phase transition, spintronics, and photonics. Integration-level
developments for reconfigurable neuromorphic computing are also exhibited.
Finally, a perspective on the future challenges for reconfigurable
neuromorphic computing is discussed, definitely expanding its horizon for
scientific communities.

1. Introduction

Artificial intelligence (AI) has the promise to provide hu-
man beings with a disruptive insight into every aspect of
life, with applications ranging from face recognition,[1] medi-
cal diagnosis[2] to robot control.[3] However, conventional com-
puting featured by centralized information processing suf-
fers from the von Neumann bottleneck which brings about
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power-hungry and data-intensive com-
puting, limiting the prosperity of AI.[4–6]

Neuromorphic computing, as an emerging
computation paradigm with distinguished
brain-like characteristics, presents superi-
ority in extremely high energy efficiency
and intrinsic error tolerance.[7–18] De-
spite the prosperity of neuromorphic
computing,[8,10–12,19–25] the customized
schemes for dedicated stationary applica-
tions present a formidable challenge for
tackling the dynamic data distributions in
ever-changing scenarios and impair the
model flexibility of biomimetic hardware.
Most of existing neuromorphic devices
cannot be reconfigured to fulfill the diverse
run-time requirements, and hence depend
on tailored designs specific to targeted
applications.[26,27] For example, neurons
for specific activation functions,[28,29] arti-
ficial dendrites,[30] and physical reservoir
computing[31] are difficult to be reconfig-
ured thus far which play a vital role in
neuromorphic computing. Furthermore,
energy- and area-efficient neuromorphic
hardware imposes stringent requirements
for the integration of multiple sophisti-
cated brain-like functions in an all-in-one
manner.[32–37]

Reconfigurable neuromorphic computing, an on-demand
paradigm highlighting a disruptive framework for ultra-efficient
artificial general intelligence, can maximally reallocate finite
resources to perform the proliferation of reproducibly brain-
inspired functions, bridging the gap between different neuro-
morphic implementations. For instance, different kinds of arti-
ficial neural network (ANN) architectures or brain-inspired com-
puting primitives could be constructed by expanding the diversity
of field-effect characteristics in a single semiconductor junction
device,[38–41] further contributing to the customer-oriented versa-
tility. Having these reconfigurable capabilities in neuromorphic
hardware is of critical importance for future AI applications to
be equipped with powerful potency by increasing functionality
instead of complexity. Reconfigurable capabilities of neuromor-
phic hardware can be comprehended from the four aspects:

• Supporting for diverse dynamically customized functions: The
reconfigurable neuromorphic devices are designed for higher
integration of various on-demand computing paradigms in an
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Figure 1. Biological and computational reconfigurability. a) Inherent reconfigurability of the brain with three hierarchical architectures, namely, unit
cells, neural network topology, and intelligent cognition. b) The hierarchy of the reconfigurable neuromorphic computing at the three progressive levels
inspired by the human brain, namely, device, array, and integration level. The miscellaneous reconfigurability of neuromorphic hardware platform can
be provided by material engineering, device configuration, array topology, heterogeneous integration, and so on.

all-in-one manner. For example, synaptic short-term plastic-
ity (STP), long-term plasticity (LTP), dendritic integrate-and-
filter ability, or somatic integrate-and-fire function can be inte-
grated in one device cooperating with simplified circuits, con-
sequently contributing to the summation of originally separate
practical applications.[38,39,42–44] It can support for self-adaptive
dynamic functions within a single device, an approach that
requires much fewer devices and power in comparison with
static counterparts, and therefore achieves a high system com-
plexity and computing performance.

• Supporting for the reproducible switch: The switch between
different modalities should be noninvasive and reversible so
as to ensure execution of multifunction with high endurance.

• Maximized reutilization of finite hardware resources: Recon-
figurable hardware platforms enable to personalize hardware
modules in a limited timescale overcoming intricate microfab-
rication of dedicated schemes, which significantly enhance the
degree of miniaturization and intelligence and improve cost
efficiency for a certain design.

• Higher universality and portability: One of the major pursuits
of reconfigurable neuromorphic computing is excellent uni-
versity and portability, which endows the devices to be rear-

ranged and assembled as general building blocks in different
types of ANN architectures.

In the past decades, tremendous efforts have been made to pur-
suit reconfigurability of neuromorphic computing. Here we pick
some representative works as listed in Table 1.

Specifically, compared to conventional static computing, re-
configurable neuromorphic computing paradigms, motivated by
the inherent programmability of biological neural networks for
fickle circumstances, can be further interpreted from material,
device, and integration level (Figure 1a,b). Novel materials such
as organic materials,[43,51,69–71] low-dimensional semiconducting
materials,[72–74] superconducting materials[75–77] offer an attrac-
tive platform for modulating abundant neuromorphic responses
and promise to provide brain-inspired devices with unprece-
dented tunability, high-speed and low-energy performance. At the
device level, a single device could be repurposed by simple ex-
ternal signals to present switchable functionalities of neurons,
synapses, dendrites, and so on.[38,39,42–44] Correspondingly, the
bio-membrane potential can be dynamically reshaped by exter-
nal stimulus (e.g., ion concentrations and electrical current), and
the ion channels on the membrane serve as reprogrammable
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resistors which facilitate the reconfigurable operations in initi-
ation, processing, and transmission of information.[78,79] From
array devices, the reconfigurable topologic connections of neu-
romorphic building blocks, such as memristive crossbar arrays,
can be fashioned to provide multilevel neuromorphic order pa-
rameters or sustain numerous computing primitives.[34,35,80–82]

Meanwhile, from the aspect of biologic neural networks, the
frontal parietal lobe network, as the core cognitive functional en-
gine in biological systems, can flexibly perform cross-paradigm
integration by reconfiguring dynamic topology between fore-
head and the default areas, thus facilitating parallel execution
of multiple cognitive assignments, such as episodic memory
and attention.[83,84] At the integration level, reconfigurable het-
erogeneous fusion[14,36] and integration,[85,86] as well as many-
core architecture[13,87–90] can also provide significant versatility.
This kind of chip-level reconfigurability contributes to concur-
rent emulation of various biological cognitive systems, such as
sensing-processing-cognition integration for speech identifica-
tion, complex logic computing, in situ memory for face recog-
nition, multifunctional intelligent medical diagnosis, and so
on.[33,36,38,82,13,87–97]

Although reviews concerning neuromorphic computation
have been provided,[4,9,21,98] most of them are always stuck on
static implementations those execute specific functions in spe-
cific contexts. To the best of our knowledge, a comprehensive
review about how to achieve dynamic reconfigurability on neu-
romorphic hardware platforms is yet lacking till now. There-
fore, it is highly important to thoroughly summarize state-of-art
progress about reconfigurable neuromorphic computing includ-
ing materials, devices, and integration, which would function as
a concise and comprehensive introduction for future investiga-
tion. We focus on the interaction between mechanism and re-
sponse characteristics, as well as all-around conclusions of ma-
terials, device configurations, and integration technologies. Ac-
cordingly, we introduce the reconfigurable computing paradigms
at the device and integration levels. Specifically, based on repro-
grammable material properties and modulation mechanisms at
the device level, we respectively explore the unique modulation
properties of ion migration (Section 2), carrier migration (Sec-
tion 3), phase transition (Section 4), spintronics (Section 5), and
photonics (Section 6). Additionally, Section 7 describes emerg-
ing important advances in the development of reconfigurable
neuromorphic hardware integration. Finally, a perspective on the
future challenges for reconfigurable neuromorphic computing
hardware is provided at the end of the review.

2. Ion Migration

As one of the most common and important operating principles
for neuromorphic devices, ion migration has shown great po-
tential in realizing the majority of important bio-mimetic neu-
ral functions.[99–101] The fundamental idea of ion migration is
to elaborately control the ionic dynamics inside the material by
means of external stimulus, for example, optical pulses[73,102–104]

or electrical field,[49,51,52,99,105,106] and eventually achieve the varia-
tion in intrinsic properties of materials which can be easily mea-
sured, such as conductance. With an emphasis on the modulat-
ing mechanism, one could classify the ion-migration implemen-
tations into cation filament- (Subsection 2.1), anion migration-

(Subsection 2.2), and electrochemical doping-based mechanisms
(Subsection 2.3). In the following subsections, we first provide
brief introductions on fundamental operation principles and re-
spectively review the reconfigurable hardware implementations
of neuromorphic computing in the corresponding parts.

2.1. Cation Migration

Cation migration-based devices, also known as electrochem-
ical metallization (ECM) devices or conductive bridging de-
vices, are major type of fundamental component used for re-
configurable neuromorphic hardware platform. Electrochemi-
cal metallization, especially the spatially separated oxidation
and reduction of metal ions, is imperative for the formation
of cationic filament. Simply triggered by electrical or optical
stimulus, noninvasively reversible control can be executed in
ECM devices and subsequently facilitates the reconfigurabil-
ity in plenty of configurations and effective materials, such as
MoS2,[107–109] halide perovskite,[110,111] graphene,[74,112,113] and or-
ganic materials.[43,51,69–71] In this part, we begin with the fun-
damental physical structure and principles of ECM devices and
then present the state-of-art progress on reconfigurable neuro-
morphic hardware implementations including hybrid neuronal
and synaptic functions, multiple-plasticity functions, as well as
reconfigurable logic functions.

ECM devices are typically composed of electrochemically ac-
tive anode, electrochemically inert cathode, and a solid electrolyte
thin film as shown in Figure 2a. The formation of filament (SET
operation) can be divided into three steps: an anodic electro-
dissolution process under sufficient positive bias voltage, an elec-
tric field-driven cationic migration across the electrolyte, and an
electrochemically reductive recrystallization on the cathode sur-
face. For example, when a positive bias is applied to the active
metal (M) electrode, the oxidation reaction of active metal hap-
pens, leading to the accumulation of M+ cations at the interface.
Under continuous voltage promotion, M+ cations migrate toward
the inert electrode. Subsequent reduction and recrystallization
of M+ into atom forms happen at the interface between the in-
ert cathode and solid electrolyte, which will result in conductive
bridges linking the different terminals of device. It should be
noted that the oxidation and reduction processes occur in spa-
tially different electrode-electrolyte interfaces, which ensure fila-
ment formation goes with a swing. Electrochemical redox-caused
formation of metal filament brings about a short-circuiting low
ohmic state which owns the nonvolatile property. Conversely, ap-
plying sufficient reverse-polarity voltage will induce the emer-
gence of RESET operation owning to filament dissolutions, set-
ting the device into a high resistive state.[21]

The major progresses of cation migration-based devices for re-
configurable neuromorphic computing have mainly concerned
hybrid neuronal and synaptic functions, and in-memory logics,
providing numerous opportunities in this field. Detail discussion
on both topics is provided below.

2.1.1. Reconfigurable Dual Paradigm of Both Synaptic and
Neuronal Functions

For ECM neuromorphic devices, one of the important investi-
gations in reconfigurability is dual-paradigm switching of both
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Figure 2. ECM-based reconfigurable neuromorphic devices. a) Fundamental operation principle of ECM cells. Reproduced under terms of the CC-BY
license.[92] Copyright 2022, The Authors, published by IOP Publishing. b) Reconfigurable dual-paradigm switching between volatile diffusive mode
(left) and nonvolatile drift mode (right) memristive characteristics upon applying DC sweeping voltages by modulating the ionic drift and diffusive
mechanisms. Reproduced under terms of the CC-BY license.[110] Copyright 2022, The Authors, published by Springer Nature. c) The right one exhibits
multilevel nonvolatile states achieved by ECM memristors. The left one refers to the reconfigurable logic-in-memory crossbar configuration made by
four 1T1R ECM memory elements. Reproduced with permission.[45] Copyright 2022, American Chemical Society. d) Probability as a function of the bias
voltage, presenting exponential-class sigmoidal distributions whose parameters can be dynamically reconfigured by gate voltage. Reproduced under
terms of the CC-BY license.[47] Copyright 2021, The Authors, published by Springer Nature. e) Fully memristive neural network integrated by RRAM-mode
synapses and selector-mode neurons. Reproduced with permission.[58] Copyright 2022, John Wiley and Sons. f) Schematic structure and operational
principle of ultrafast resistive field effect transistor (ReFET) using proximity-oxidation-grown TiO2 as the active channel. Reproduced with permission.[48]

Copyright 2022, John Wiley and Sons. g) Image recognition accuracy for 5 different LTP/LTD optical pulse within 1000 training cycles. Reproduced with
permission.[104] Copyright 2021, John Wiley and Sons.

neuronal and synaptic functions. In general, the emulation of
neuronic leaky integrate-and-fire (LIF) functions can be real-
ized by a volatile threshold switching (TS) mechanism, and bio-
synaptic characteristics are fashioned by nonvolatile resistive
switching (RS).[110] Although exploring diverse mechanisms and
materials accelerates the respective developments of artificial
synapses and neurons, a significant issue urging one’s concern
is how to offer a viable unifying solution that can actively con-
trol over these two specifications when hindered by poor switch-

ing performance and unruly morphology of cation-filament de-
vices. For this purpose, existing efforts mainly focus on modulat-
ing redox-state concentration or morphology of metal filament to
achieve deeper reconfigurability of neural devices.[72,73,110,114]

By combining controllable ionic diffusion and drift mech-
anisms, John et al. demonstrated a reconfigurable memristor
that portrays preferable manoeuvrable switching between synap-
tic nonvolatile mode and neuronal threshold mode by pro-
grammable ECM (Figure 2b).[110] This device consists of CsPbBr3

Adv. Mater. 2023, 35, 2301063 © 2023 Wiley-VCH GmbH2301063 (5 of 39)
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nanocrystals with oleylguanidinium bromide ligands capped as
an active switch matrix and can be controlled only through DC
voltage without extra engineering. To be specific, reversible mod-
ulation of synaptic weight is guaranteed by stable filaments
which are formed by the cation drift mechanism, and the low acti-
vation energy of Ag+ and Br− facilitates their diffusive migration
that consequently contributes to volatile neuronal patterns. Com-
pared to previous dual-paradigm memristors, excellent incorpo-
ration of perovskite and organic capping ligands gets rid of reluc-
tant electroforming initialization and weakened retention, which
further brings about low switching voltages (≤ 1 V), low currents
(≤ 1 μA), and record-high endurance in both volatile (2 × 106 cy-
cles) and non-volatile (5.6 × 103 cycles) modes. Furthermore, by
utilizing 25 reconfigurable perovskite devices, a fully-memristive
reservoir computing framework was qualified to process tempo-
ral signals and classify neural firing patterns.

In addition to drift and diffusion dynamics of ions, exploring
novel electrolyte forms and architectures with low-dimensional
material also enables preferable on-demand switching char-
acteristics. By directly controlling the filamentary morphology
through 1D material, Milano et al. proposed an all-in-one neu-
romorphic device by using single-crystal ZnO nanowires (NWs)
as electrolytes.[72] Asymmetric-electrode configuration (Ag–Pt)
effectively prevents NWs from overheating-induced breakdown.
What’s more, benefiting from Ag filament dynamic on NWs sur-
face, reprogrammable multiple functions such as multistate non-
volatile bipolar switching, selector functions, and STP were suc-
cessfully integrated into a single memristor, all of which promote
the realization of self-assembled NMs-based artificial neural net-
works (ANNs).

Indirect control over the redox-state concentration with the aid
of low-dimensional material has also present potential in recon-
figurable modulation of filamentary dynamics. Zhou et al. intro-
duced 0D bimetal gold–silver core-shell nanoparticles into the
electrolyte which serve as discrete nucleation centers with ex-
cellent charge trapping and transport properties for regulating
filaments.[115] This rationally-designed reproducible filament dy-
namics smoothly brought about reconfigurable bistable RS and
multi-plasticity synaptic functions, such as paired-pulse depres-
sion (PPD), paired-pulse facilitation (PPF), post-tetanic potenti-
ation (PTP), spike-time-dependent plasticity (STDP), as well as
short-term to long term transition.

Reprogrammable band engineering has also shown signifi-
cant reconfigurable implementations at both device and array
level. Wang et al. demonstrated an Ag/(InP/ZnS) QDs/Indium
tin oxide memristor with dual-mode switching through the non-
invasive ultraviolet light programming operation.[73] Benefiting
from the barrier effect of ZnS shell under ultraviolet light, the
photoexcited-hole aggregated QDs accelerate the rate of modu-
lating Ag+ concentration, which accounts for the reversible tran-
sition from nonvolatile RS to volatile TS. Furthermore, a repro-
grammable 9 × 9 visual data storage array and the LIF neuron
were successfully achieved to meet the maneuverable application
requirements of electronics in the future.

Apart from single redox mechanism, another thread is to em-
ploy competition between electrochemical migration and ther-
modynamic relaxation. Li et al. utilized above-mentioned ef-
fect to present novel filament modulation schemes of 1D Ag
nanoclusters.[44] The Ag nanoclusters were introduced at the

electrolyte/electrode interface and precisely controlled by exter-
nal pulses that faithfully emulate biological Ca2+ motions. It is
verified that the reconfigurable Ag nanocluster dynamics are
dominated by electrochemical migration and thermodynamic
relaxation, which facilitate the integration of neuronal spiking
and synaptic functions (e.g., metaplasticity, asynchronous classi-
cal conditioning, and spike-timing-dependent plasticity, namely,
STDP) in a single device, thus paving the way for on-demand
unit-cell-level neuromorphic devices.

2.1.2. Reconfigurable In-Memory Logics and Neuromorphic
Computing

Reconfigurable logic-in-memory architectures are beneficial for
tackling data-intensive neuromorphic computing. Boolean logic
operations can easily be performed by a single human neu-
ron, which inspires artificial neuromorphic systems to develop
diverse reconfigurable logic-in-memory computing with less
hardware requirement than ever before.[116] Reconfigurable in-
memory logics, on the other side, featuring binary computation,
can be used to construct binary neural networks (BNNs), which
might be a preferable cost-efficient scheme for executing deep
learning than GPUs.[38,117]

It is worth noting that cation filament devices based on ECM
have been proven feasible to achieve reconfigurable logic-in-
memory functions which promise to be further utilized in brain-
like computing. Recently, a reconfigurable conductive-bridging
memristor with stable multilevel programming capabilities was
qualified (Figure 2c), which can sustain reconfigurable complete
Boolean functions and further multifunctional neuromorphic
computing.[45] In this work, Cesium Halides are applied as a solid
electrolyte for excellent on-off ratio (exceeding 1010) and the in-
corporation of MoOx interfacial layer in bottom electrode enables
stable filament switching. The MoOx layer effectively regulates
the transformation of the conductive filaments (CFs) owing to
its nonstoichiometric nature, thereby promoting the reliability
and linearity of memristors with forming-free, ultralow operat-
ing voltage. The consequent low variation (< 30 mV) and high re-
producibility (> 105 cycles) in a wide dynamic range have been fa-
vorably used to implement reconfigurable logic-in-memory func-
tions based on a programmable 1T1R crossbar array configura-
tion. By integrating the sensing ability, a reprogrammable opto-
electronic memristor array was fabricated, using ITO as the bot-
tom electrode, ZnO as the active layer, and Ag as a top electrode,
to achieve sensing-memory-computing integrated paradigms, in
which reconfigurable hybrid optical and electric modulation of
fundamental neuromorphic parameters were verified.[118] Con-
sequently, this memristor exhibits multiple nonvolatile biolog-
ical functions with a higher dynamic regulation ratio of ≈ 25
than ever before, enabling array-level sensing-computing inte-
grated Boolean logic operations with high reconfigurability. Fur-
thermore, the memristor array-based face identification task was
achieved by system-level integration of reconfigurable memris-
tors array with an accuracy of 86.7%.

Compared with other redox-modulated devices, the energy-
efficient property, superior scalability, changeable filament mor-
phology, and a wide range of material choices combined
with crossbar architecture endow the ECM devices with the
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attractive potential for neuromorphic reconfigurability. Although
substantial research efforts have been reported, the number of at-
tainable synaptic nonvolatile states is limited, and emulation of
neurons only focuses on LIF characteristics thus far. Moreover,
application-level implementations of reprogrammable ECM neu-
romorphic devices, such as digital identification, are still in lab-
oratory stage. Therefore, exploring richer neural dynamics and
better endurable switching is necessary to meet deeper brain-
inspired computing requirements.

2.2. Anion Migration

For devices based on anion migration, the change in material
properties (e.g., conductivity) is induced by directed movement
of anions such as oxygen ions, sulfur ions, and organic an-
ions. Detailed investigations concerning the utilization of anion
migration for reconfigurable neuromorphic devices have been
amply implemented recently.[119] Herein, filamentary and non-
filamentary types of anion migration-based devices are classified
and summarized from the various reconfigurable neuromorphic
aspects.

2.2.1. Filamentary Type

Typical anion migration-based filamentary devices usually
demonstrate a metal/insulator/metal sandwich structure simi-
lar to ECM devices. Both of the metal electrodes in this kind
of devices are inertial, while ECM devices require at least one
active metal anode as just mentioned in Section 2.1.[120] When
applying an appropriate voltage to the electrodes, the anions or
vacancies in the insulator migrate, causing the formation and
annihilation of conductive filaments, corresponding to various
resistance states of the device.[121] The displayed nonvolatile re-
sistive property of filamentary anion-migration electronics has
been demonstrated desirable to implement memristive neuro-
morphic devices,[35,122–124] which allows for not only simulation
of multi-plasticity synapses[58] and stochastic neurons[47] but
also neural networks that can facilitate associative memory and
hardware-based pattern-recognition task, at relatively high en-
ergy efficiency.[18,125]

Modulating fundamental neuromorphic parameters (e.g.,
synaptic weights) through resistive control constitutes a promis-
ing candidate for enhancing reconfigurability in neuromorphic
electronics. Hu et al.[125] demonstrated both single- and multi-
associative memory capability by constructing a memristive Hop-
field network, which is implemented through HfO2 memristive
devices and peripheral circuits. The intrinsic reconfigurability
of synaptic resistance matrix derives from the formation and
destruction of oxygen vacancy-induced filaments, consequently
bringing about diverse positive and negative weights. Utilizing
elaborate adjustment of pulses, the resistive matrix of memristive
Hopfield network can be fashioned and fixed into desired values,
which further sustains the storage of multiple patterns for pro-
cessing. Consequently, powerful associative memories are qual-
ified feasible using this memristive Hopfield network and can
achieve emulation of humans’ “weak” and “strong” memories.

Motivated by inherent random movements of anion in fila-
mentary dynamics, reconfigurable stochastic neurons equipped

with controllable statistical behaviors have been favorably
demonstrated utilizing memristive devices.[111,126] On account of
SnOx/MoS2 heterogeneous memristive architecture, Yan et al.
reported a probabilistic neuron to achieve dynamically tunable
exponential-class sigmoidal distributions resembling physical
Fermi–Dirac distribution (Figure 2d).[47] This three-terminal het-
erogeneous memristor accomplishes unprecedented accurate
modulation of its statistic distribution simply through gate volt-
age that previous two-terminal counterparts disable to fulfill. The
probabilistic statistic function with reinforced reconfigurability
enables memristive neurons to execute the searching features
of Boltzmann machines, further guaranteeing selected “cooling”
strategies that can subsequently be used in maximum satisfiabil-
ity problem.

Beyond above-mentioned partly memristive neuromorphic
configurations, fully memristive neural network, as an advan-
tageous post-complementary metal oxide semiconductor (post-
CMOS) hardware paradigm, has unveiled prospects in imple-
menting reconfigurable neuronal-synaptic-integrated functions
by employing the synergistic effect of anion migration and other
mechanisms.[58] Based on V/VOx/HfWOx/Pt, a memristor was
demonstrated to obtain programmable dual modes by utiliz-
ing the coupling effect of VOx/HfWOx functional layers, whose
highly reproducible switching capabilities stem from the forma-
tion of anion filaments in Hf-doped layer. Anion migration in
HfWOx contributes to realization of nonvolatile resistive proper-
ties for simulating bio-synapses, while the volatile neuronal se-
lector mode derives from Mott transition in VOx layer. The inte-
gration of dual functions in the same memristor not only signif-
icantly simplified the hardware configuration for synapses, but
also achieved the twofold capacity of information encoding for
neuronal functions than ever before, highlighting a cost-efficient
pathway for hardware platforms of fully memristive neural net-
works, as shown in Figure 2e.

With the fundamental mechanisms based on anion filament,
the well-performed emulation of synaptic and neuronal char-
acteristics together with high reconfigurability among diverse
brain-inspired functions, make these memristive devices promis-
ing competitors for neuromorphic computing. Notably, utiliz-
ing large-scale crossbar array configurations that equipped with
above-mentioned memristors has been qualified as an up-and-
coming approach to execute in-memory parallel computing
paradigms. These crossbar array architectures fully take advan-
tage of the abandonment of digital/anologue conversions, sub-
stantially decreasing the time loss and energy overhead, which
highlights the potential of neuromorphic electronics for higher
integration.[35,123,124]

2.2.2. Non-Filamentary Type

Although anion migration-based filamentary devices have been
extensively studied for memristive neuromorphic implementa-
tions, the intrinsic stochastic dynamics, nonlinearity, and asym-
metric variation of such filamentary electronics that arise from
random kinetic displacement of anions significantly hampered
the further accurate modulation and miniaturization.[124,127,128]

As a preferable scheme than filamentary type, filament-
free anion migration-based devices, featuring deterministic
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switching that derives from dominant controllable statistic be-
haviors rather than atomic stochastic dynamics, enable ion
migration-modulated electronics to work in a reproducible and
energy-efficient manner.[129] How to achieve ultrafast operation
speed and high energy efficiency are the two vital long-term goals
those neuromorphic electronics long for. In this subsection, we
discuss non-filamentary anion migration mechanism and the re-
cent progress in implementing reconfigurable neuromorphic de-
vices with high processing speed and low power consumption.

Ultrahigh operation speed promise to be actualized by recon-
figurable in-memory neuromorphic paradigms on the basis of
filament-free anion migration mechanism. Kumar et al. reported
an ultra-speedy (≈ 42 ns) in-memory ReFET using proximity-
oxidation-grown TiO2 film as functional layer, whose fundamen-
tal mechanism attributes to redox-induced speedy redistribution
of oxygen in TiO2.[48] The accurate regulation of resistivity was
simply realized by adjustable gate pulse and enabled the devices
to perform reconfigurable in-memory logics through designed
digital Boolean circuits. The intriguing reconfigurable character-
istics of ReFET (Figure 2f) endow this in-memory device the abil-
ities to implement neuromorphic computation such as synap-
tic multiplasticity, on-demand learning, and forgetting behavior,
as well as pattern recognition. Notably, although this kind of
filament-free schemes has present advantages such as excellent
on/off ratio (105) and better retention (> 10 years) performance,
the gate voltage for storage is up to 30 V in this work and how to
achieve relatively low working voltage is still a problem of great
concern, calling for further investigations.

Higher energy efficiency, as another long-term pursuit for
large-scale neuromorphic computing, potential for runtime ex-
tension, stability enhancement, and cost reduction, have been
successfully achieved in eco-friendly biomimicry visual sys-
tems by using photosensitive material. The reconfigurabil-
ity stems from anion migration-based programmable photore-
sponse, showing profound implications for highly-integrated
first-stage image processing.[43,102–104,130] Motivated by biologi-
cal retina, in-sensor computing paradigms for image perception
have been verified to be feasible through this mechanism, while
how to achieve the excellent wavelength selectivity remains a
key factor for future intelligent applications. By utilizing organic
carbon nitride (C3N4) as the floating gate, Park et al. presented
wavelength-selective photonic synaptic transistors,[103] which
achieved biologically-comparable femtojoule-level energy con-
sumption. Beyond this conventional visual system with relatively
large power consumption and complex circuitry, self-powered
progressive optoelectronic paradigms can offer a breakthrough
for energy and computation efficiency. For instance, self-powered
non-volatile optoelectronic synapses with programmable man-
ifold memory ability and simplified circuitry were successfully
demonstrated by Kumar et al.[130] Actuated by displacement of
oxygen vacancies, the effective depletion width of NiO/TiO2 het-
erojunctions can be elaborately modulated, which subsequently
contributes to the multilevel nonvolatile voltage and photocur-
rent response. This reconfigurable electronic-photonic coupling
effect further enabled this single photoactive heterostructure to
simplify the amount of device terminal for flexibility and to
mimic nearly all-around bio-characteristics of synapses, such as
excitation or depression, manifold memory ability, PPF, and so
on, where the training energy consumption was calculated down

to 0.3 nJ per event. A small-scale array-level integration with these
5 × 5 two-terminal photosensors was implemented to qualify the
classification of optical spatiotemporal information.

Although the above-realized optoelectronic processors have
demonstrated the potential power in artificial visual systems for
neuromorphic computation, latency, and hardware redundancy
induced by the optical-electronic coupling interface hamper the
speedup and high energy efficiency, which urge for the novel
paradigms of hardware. Full-optically driven hardware platforms
rendering ultrahigh computing speed promise to get rid of these
shortages by unobstructed optical interconnection. Ahmed et al.
introduced a reconfigurable field-effect phototransistor with ex-
cellent ultraviolet tunable photoresponse which can perform in-
pixel information processing.[104] Based on multilayer 2D black
phosphorus (BP), the natural oxide layers (PxOy) on both sur-
faces of BP induced in-gap defect states, elaborately controlling
the trapping and detrapping of photoexcited carriers. This kind of
surface-adsorbates defects that work as trapping centers helped
to achieve wavelength-controlled multilevel conductivity through
fully light modulation, acting as the cornerstone of device-level
reconfigurability. The adopted fully-light approaches can achieve
ultralow power consumption and ultrafast speed which is more
than two order of magnitude shorter than state-of-art optoelec-
tronic devices. To demonstrate the neuromorphic computing per-
formance, supervised learning and facial recognition were suc-
cessfully carried out by using this BP-based all-optical transistors
for emulation of optical neural networks, which realize enhanced
accuracy (> 90%) within 1000 training cycles (Figure 2g).

2.3. Electrochemical Doping

With elaborately designing the terminal configurations and elec-
trolyte layers, the functional ions inside the electrolytes could
be gently redistributed or migrate into channel material, result-
ing in the multilevel resistance change. In this subsection, we
will introduce the recent achievements of reconfigurable neu-
romorphic computing from the perspectives of electrochemical
(EC) doping mechanism, which utilizes gate-dri[1–4]ven migra-
tion of ions into channel materials for EC redox reactions and
consequently induces the carriers’ doping. By appropriately engi-
neering the material and architecture of devices, EC doping can
be manipulated at relatively low voltage, and the corresponding
devices promise to relax the requirements for energy-efficient
versatile brain-inspired applications.[131–133] Compared to other
electrolyte-gated-based mechanisms (e.g., electric double layer),
EC doping also induces a much higher on-off ratio and hysteresis
degree, which is favorable for realizing neuromorphic reconfig-
urability.

Extraordinary-linearity EC doping-based synaptic transistors
using ionic liquid and SmNiO3 were introduced as early as
2014 by Shi et al. By designing appropriate channel and elec-
trolyte materials,[134] EC doping has presented abilities of ac-
curate modulation through a wide extent of oxidation and re-
duction states. However, on account of the unruly characteris-
tics of liquid-electrolyte components, conventional EC transistor-
based synapses suffer from unreliable LTP characteristics, low
retention time, and ambiguous plasticity, which are greatly detri-
mental to the design of tunable multi-modal neuromorphic
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devices.[135] Wang et al. demonstrated a multi-plasticity synaptic
transistor with threefold tunable temporal properties based on
the solid-state organic material system.[43] With the assistance of
ferroelectric dipole switching, the EC synapses possess three on-
demand plasticity including STP, minute-level LTP by EC dop-
ing, and extra 1000-second-persistent LTP by ferroelectric mech-
anism (Figure 3a). The reconfigurable switching of these working
modes can be simply achieved by changing amplitude of applied
gate voltages. Incorporating light-sensitive electronics, these ar-
tificial synapses facilitate an ultra-flexible light-triggered neuro-
morphic device with capabilities of addressing light intensity and
frequency which have been utilized in primary visual-perception-
recognition tasks.

Reconfigurable protonic resistors, as the vital building blocks
in analog deep learning, are capable of executing intricate neuro-
morphic computation as demonstrated by Onen et al.[49,50] Their
rationale for modulating neuromorphic state parameters is elec-
trochemically tuned intercalation of the smallest and lightest
ions, protons, into WO3 channel to change the reconfigurable
device conductance. Benefitting from the extremely electron-
insulating property of nanoporous phosphosilicate glass (PSG)
and noninvasive conduction of protons, these reprogrammable
resistors enable ultrahigh pulsed electric field and consequently
super-fast energy-efficient nanoionic devices, at least 104 times
as speedily as biological synapses (Figure 3b, top figure). High
endurance and extraordinary retention behavior (non-degrading
operation over 105 pulse and 30 h) (Figure 3b, bottom figure) con-
firm the replicability of the device, promising to achieve further
reconfigurability in analog deep learning whose ultra-high pro-
cessing speed and far less energy consumption transcend its dig-
ital counterpart.

Apart from the inorganic material-based devices mentioned
above, EC organic neuromorphic devices, which inherently pos-
sess dual-paradigm properties, have presented tantalizing op-
portunities to construct an attractive electronic platform for
reconfigurable neuromorphic electronics owing to their facile
and scalable printing characteristics. Organic neuromorphic de-
vices could also present powerful potential in power efficiency,
multi-functionality, and biocompatibility. Early in 2017, Burgt
et al. qualified that EC neuromorphic organic devices based
on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PE-
DOT:PSS) film possess the ultrahigh density of non-volatile
states (> 500 distinct states within a ≈ 1 V range) with ex-
cellent cycling performance and low energy consumption.[51]

They also demonstrated the biocompatibility and mechanical
flexibility of this organic device which highlights the poten-
tial of configuring versatile neuromorphic interconnecting plat-
forms. Inspired by these distinct multilevel states of EC or-
ganic neuromorphic electronics, substantial efforts were made
to demonstrate their dual-paradigm characteristics, such as
volatile/nonvolatile and enhancement/depletion modes. Yu et al.
proposed a volatile/nonvolatile bi-mode neuromorphic transistor
by employing EC doping mechanism along with the formation
of electrical double layers controlled by external voltages.[70] This
bi-mode device presents additional third states with high classi-
fication accuracy that can be exploited to emulate bio-nociceptor
with tunable sensitivity. However, although organic EC transis-
tors can be executed in both enhancement and depletion mode,
the static property of which is a huge impediment to realize

highly switchable neuromorphic devices. Very recently, based on
the EC doping mechanism, Nguyen-Dang et al. reported recon-
figurable dual-paradigm transistors employing a self-doped con-
jugated polyelectrolyte as the functional layer (Figure 3c).[52] The
reconfigurable modulation was accomplished by simply tuning
the polarity of applied voltage, which originates from concurrent
existence of anion doping and cation dedoping of active mate-
rial. The resultant reprogrammable transistors were used to exe-
cute multiple dynamic Boolean logics, paving the way toward re-
configurable neuromorphic electronics, such as BNNs for deep
learning.[38]

Exploiting hydrogen dopants as donors to induce electronic
phase transitions would also lead to reprogrammable con-
ductivity change by electrically modulating electrolyte’s band
architecture.[39] A reconfigurable neuromorphic hardware plat-
form made from hydrogen-doped perovskite nickelate (NdNiO3)
was successfully implemented through voltage-controlled band
engineering. By utilizing hydrogen doping, electrons are non-
invasively donated into electrolyte to modify band structure so
that the valance change of nickel ions can be subsequently intro-
duced. The reconfigurable computing functionalities of neurons,
synapses, and memory capacitors were successfully integrated
into such a single device, whose run-time cross-modality switch-
ing is simply achieved by external voltage pulses (Figure 3d–g).
All-around reconfiguration of brain-inspired functions were fur-
ther qualified: the memory-capacitor mode was used for con-
structing the key elements of reservoir computing, and the ob-
tained neuronic and synaptic modes were leveraged to configure
the self-adaptive grow-when-required networks which can imple-
ment unsupervised learning for intelligent recognition.

3. Carrier Migration

Aside from ion dynamics, carrier migration as another indis-
pensable operation principle has also been explored in neuro-
morphic applications. “Carrier migration” here only refers to the
migration of electrons and holes, which can be modulated by
electric field, optical or ferroelectric modulations. The adjustable
and switchable carrier migration behaviors under various exter-
nal stimuli can mimic biological neural functions, which offers
promising prospects to implement reconfigurable neuromorphic
hardware.[91,136] In this section, we review the recent advances of
reconfigurable neuromorphic computing utilizing devices based
on carrier migration by highlighting the modulation approaches
containing electric modulation, optical modulation, and ferro-
electric modulation.

3.1. Electric Modulation

Electric modulation (EM) is one of the vital candidates to effi-
ciently regulate carrier migration by adjusting the amplitude and
polarity of the applied voltages. EM has been extensively studied
for carrier migration due to its better stability and faster response
speed compared to counterparts based on other mechanisms, es-
pecially ion migration.[21] In this subsection, we mainly focus on
different reconfigurable functions relying on the EM of carrier
migration.
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Figure 3. Electrolyte doping-based reconfigurable neuromorphic devices. a) Three reprogrammable plasticity: EC doping-induced STP (left) and LTP
(middle), as well as ferroelectric LTP (right). Reproduced with permission.[43] Copyright 2018, John Wiley and Sons. b) Performance of ultrafast protonic
reconfigurable resistors. The top and bottom panel shows the modulation and endurance performance, respectively. Reproduced with permission.[49]

Copyright 2022, The American Association for the Advancement of Science. c) The dual modes of self-doped organic transistors. Left and right panel
show the enhancement and depletion mode, respectively. Reproduced with permission.[52] Copyright 2022, John Wiley and Sons. d–i) Reconfigurable
functions of a single perovskite device simply modulated by electrical pulse, including resistor (d,i), memcapacitor (e), neuron (f), stochastic behavior
(g), and synapse (h). Reproduced with permission.[39] Copyright 2022, The American Association for the Advancement of Science.
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Neuromorphic devices with electric field-controlled dynamic
learning characteristics are conducive to realizing continuous
learning in neural networks. Recently, Hersam et al. presented
a reconfigurable memtransistor with monolayer MoS2 that can
be used for continuous learning in SNNs.[137] The Schottky bar-
rier height at the source/drain electrodes changes with varying
gate biases due to defect migration and charge trapping. Con-
sequently, the memtransistor can realize tunable LTP and LTD,
mimicking biological synaptic weight update and neuroplasticity.
Benefiting from the gate-tunable synaptic properties, five learn-
ing curves can be realized via varying gate amplitude, which was
further used to implement unsupervised continuous learning in
simulated SNNs, demonstrating the flexibility to perform dif-
ferent tasks by dynamically reallocating the resource. However,
the memtransistor exhibits nonlinear and asymmetric potentia-
tion/depression, which is detrimental to effective network train-
ing. Notably, the situation can be changed by connecting two de-
vices with opposite weights to cancel out the asymmetry or by
optimizing programming pulses.[138,139]

Reconfigurable and bilingual (i.e., excitatory and inhibitory)
synaptic devices are also concerned to provide several signifi-
cant advantages, such as achieving higher similarity with bio-
logical synapse to simplify circuit design and preparation tech-
nology, toward more effective neuromorphic computing.[42,140]

Motivated by the programmable electrically-doping properties of
ambipolar materials, much progresses have been made in re-
alizing reconfigurable synaptic hardware.[141,142] Ren et al. re-
alized both excitatory and inhibitory synaptic behaviors in de-
vice based on twisted bilayer graphene with ambipolar conduc-
tance by tuning the bottom gate voltage.[143] Tian et al. designed
a bilingual artificial synaptic device based on BP/SnSe hetero-
junction, the reconfigurability of which relies on electrical bi-
ases at presynaptic and postsynaptic terminal to implement ex-
citatory and inhibitory paradigms. Superior STDP characteris-
tics with better symmetry and higher synaptic weight changes
were subsequently demonstrated.[144] Furthermore, to solve the
problem that common synaptic devices need an additional termi-
nal to realize heterosynaptic plasticity, Ding et al. presented a re-
configurable memtransistor using 2D WSe2,[145] which can emu-
late both homosynaptic and heterosynaptic plasticity and achieve
reconfigurable excitatory and inhibitory plasticity under the ac-
tion of EM. Apart from synaptic multi-plasticity, other essential
homosynaptic functions, such as spiking rate-dependent plastic-
ity (SRDP), PPF, PPD, and filtering can be also achieved in this
memtransistor.

Beyond ambipolar material-based schemes, combining p- and
n-type semiconductors as stacked channels highlights a brand-
new vista to implement reconfigurable bilingual synaptic func-
tions. Very recently, Shim et al. proposed a stretchable device with
bilingual synaptic behaviors,[42] by constructing a reconfigurable
synaptic transistor with the bilayer semiconductor of n-type or-
ganic film, which adopts p-type single-walled carbon nanotubes
(s-CNTs) networks as the stacked channel and a polyurethane
(PU) elastomer as gate dielectric. Owning to voltage-induced dif-
ferent carriers and carrier migration directions, reconfigurable
excitatory and inhibitory synaptic behaviors can be achieved
(Figure 4a,b). The bilingual synaptic characteristic further en-
ables the device to realize single- and dual-directional learning
functions in neural networks. Based on the experimentally mea-

sured synaptic weight updates, a three-layer network is simulated
with a recognition accuracy of over 90% for Mixed National In-
stitute of Standards and Technology (MNIST) digits, even under
50% strain (Figure 4c).

Furthermore, many of attempts have realized the higher func-
tional complexity by integrating reconfigurable synaptic and logic
functions utilizing neural devices. Pan et al. demonstrated an
electrically-modulated WSe2 transistor, which can be employed
for reconfigurable logic and neuromorphic systems.[38] Specif-
ically, reversible electrical doping and carrier migration behav-
iors in the channel can be manipulated by dual gates and drain
voltages, leading to various field-effect characteristics. Utiliz-
ing this switchable property, a logic cell with two WSe2 tran-
sistors was designed to achieve multiple logic functions simul-
taneously. By further integrating three WSe2 transistors and a
capacitor, reconfigurable synaptic functions were proposed as
shown in Figure 4d. The capacitor is utilized to modulate the
potential difference across dual gates of device M1, the corre-
sponding channel doping in device M1 allows the system to
simulate synaptic excitation or inhibition by applying the pre-
and post-synaptic spikes to devices M2 and M3, respectively. Be-
sides, the system can achieve reconfigurable synaptic STDP by
changing the relative potentials between V1 and V2 (Figure 4e,f),
which requires fewer devices to achieve the same functions
than MOSFET technology. Although the system can implement
reconfigurable synaptic functions, the external capacitor lim-
its high-density integration. Scaling will require memory func-
tionality which can be achieved by using ferroelectric or float-
ing gate devices.[146–150] Xiong et al. introduced a reconfigurable
logic-in-memory synapse based on BP/ReS2 heterostructure.[151]

By gradually tuning voltage pulses, they realized a nonvolatile
ternary logic inverter that exhibits three distinct logic states, ow-
ing to the tunable carriers’ trapping and de-trapping processes
at the BP/ReS2 interface. The BP/ReS2 heterostructured device
has a unique trilingual response property, that is, the synap-
tic weight change can be switched from inhibitory to excita-
tory and then back to inhibitory along with the gate voltage
from −3 to 3 V. Besides, the ANN stimulation using the ex-
perimental data showcase recognition accuracies of ≈ 91.3%
and 89.5% on small and large MNIST digits, respectively.

3.2. Optical Modulation

Compared with electrical modulation, the introduction of opti-
cal modulation endows neuromorphic devices with huge advan-
tages such as high operation speed and ultralow power consump-
tion. The exploration of synergistic photoresponse from specific
junctions between various materials has also brought opportu-
nities to demonstrate diverse functions of optoelectronic neuro-
morphic devices. Notably, optoelectronic neuromorphic devices
are generally capable of optical sensing and information process-
ing. Therefore, in addition to the regular synaptic plasticity and
logic functions, they also show great potential in artificial vision
systems.

In recent years, great efforts have been made to explore synap-
tic plasticity and logic operations based on optical stimuli.[152–154]

A meaningful strategy is to design band alignment between
heterojunctions. For example, Zhou et al. developed a Type-
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Figure 4. Reconfigurable neuromorphic devices based on purely electric modulation. a) Working mechanism of stretchable reconfigurable synaptic
transistor. b) The transfer curves with inhibitory and excitatory synaptic responses under different operation circumstances. c) Backpropagation training
results of dual-directional image recognition. Reproduced with permission.[42] Copyright 2022, Springer Nature. d) The illustration of biologic synapse
(top) and implemented reconfigurable synaptic functions circuit (bottom). e,f) Reconfigurable synaptic anti-Hebbian (e) and Hebbian (f) STDP learning
rule, which are achieved via changing the relative potentials between V1 and V2. Reproduced with permission.[38] Copyright 2020, Springer Nature.

II heterojunction based on MoS2/PTCDA that allows efficient
charge transfer at the interface of the heterostructure under
laser pulse.[133] The device is capable of achieving optical synap-
tic excitatory and demonstrates a maximum long-term synaptic
weight change of 60 which outperforms previous research based
on optical modulation.[155–158] Very recently, Yang et al. reported
a floating-gate transistor based on MoS2/h-BN/graphene het-
erostructure, which demonstrates voltage-assisted light program-
ming/erasing operation.[159] Thanks to this voltage-assisted bidi-
rectional optical control, synaptic behaviors including LTP and
LTD, as well as four reconfigurable logic gate functions (AND,
OR, NAND, and NOR) are successfully implemented.

Despite different stimulation sources, the basic principles of
synaptic function are universal in electrical and optoelectronic
neuromorphic devices. It is therefore expected to achieve bidi-
rectional updating of synaptic weights by pure optical modula-
tion. Several all-optically modulated neuromorphic devices with
maneuverable synaptic or logic functionalities were proposed
based on materials, such as ZnO/PbS heterostructure,[160] per-
ovskite/ZnO heterostructure,[161] and PtSe2−x films.[162] The uti-
lization of defects is regarded as a promising strategy to ex-
plore bidirectional optical modulation. Ahmed et al. presented
a fully light-controlled versatile synaptic device with defective
BP.[104,163,164] The trap sites induced by natural oxide PxOy layer
and surface adsorbates can act as scattering centers, thus nega-
tive photocurrent can be observed by applying 365 nm illumina-

tion. While being exposed to 280 nm wavelength light, the pos-
itive photocurrent generated because of the passivation of oxy-
gen sites and the introduction of carriers. Such bipolarity pho-
toresponse characteristics enable the BP device to mimic excita-
tory and inhibitory synaptic behaviors and achieve reconfigurable
Boolean logic operations including nonlinear XOR gate. Though
this study presents a potential for neuromorphic computation,
the use of ultraviolet light would restrict artificial vision applica-
tions and cost more compared with visible light.

By considering the synergistic photoresponse of different ma-
terials, some neuromorphic devices based on hybrid structure
have also successfully achieved bidirectional optical modulation
and involve wavelengths in the visible range. In 2020, Lai et al.
proposed an artificial synapse made of a Bi2O2Se/graphene hy-
brid structure with positive and negative photoresponses under
illumination of 635 and 365 nm light sources, respectively.[165]

Bidirectional synaptic characteristics and reprogrammable logic
functions (AND and OR) were realized successfully in this de-
vice. Later in 2021, Hou et al. demonstrated an optical synapse
based on pyrenyl graphdiyne (Pyr-GDY)/graphene/PbS QDs het-
erostructure which can implement bidirectional synaptic func-
tions and more reconfigurable logic functions by 450 and
980 nm excitation (Figure 5a).[166] In detail, when exposed to
450 nm illumination, the photogenerated holes trapped in Pyr-
GDY are a lot more than the photogenerated electrons trapped in
PbS QDs, resulting in a net positive photogating effect and con-
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Figure 5. Reconfigurable neuromorphic devices based on optical and ferroelectric modulation. a) “OR”, “AND”, “NOR”, “NAND”, and “XOR” logic
functions realized by using 980 and 450 nm optical pulses as input and modulatory input. Reproduced with permission.[166] Copyright 2021, Amer-
ican Chemical Society. b) Reconfigurable image processing realized by varying Vg. Reproduced with permission.[169] Copyright 2021, The American
Association for the Advancement of Science. c) Schematic diagram showing the pinning of ferroelectric domain walls with oxygen vacancies and the
resulting equivalent dielectric (DE) layer under the control of bias. Reproduced with permission.[172] Copyright 2022, John Wiley and Sons. d) Schematic
illustration showing the update of synaptic weights with positive and negative reward, as well as the corresponding circuit diagram. Reproduced with
permission.[173] Copyright 2022, John Wiley and Sons. e) Schematic diagram showing the reconfigurable functionality of basic device. The left part
denotes nonlinear transistor functionality with the channel-polarity regulation of FE polarization. The right part denotes memory functionality with tun-
able resistance controlled by polarization reversal under positive and negative gate voltages. f) Schematic of the circuit diagram, where the memory
cells and amplifier were integrated to realize binary classification. Reproduced with permission.[147] Copyright 2021, The American Association for the
Advancement of Science.

sequent negative photoresponse. Instead, under illumination of
980 nm light, most of the light is absorbed by PbS QDs. The pho-
togenerated electron trapped in PbS QDs would lead to a positive
photoresponse. The bidirectional photoresponse feature endows
the device with reconfigurable synaptic excitation and inhibition
and five various logic functions including AND, OR, NAND,
NOR, and XOR. Utilizing the linear and symmetric synaptic up-
dates, the simulated ANN demonstrates an accuracy of ≈90%
on MNIST digits. Furthermore, an integrated sensing-memory-
processing system was demonstrated which can achieve real-
time detection, in situ image storage, and processing, showing
huge possibilities for future neuromorphic visual applications.

Based on the tunable photoresponse achieved by voltage-
assisted or all-optical modulation, and in conjunction with the
potential of optoelectronic devices in the field of artificial vi-
sion, several studies have begun to focus on how to further ex-
tend the reconfigurable device properties to application level. For
instance, Mueller at al. developed a neuromorphic image sen-
sor based on a reconfigurable WSe2 optoelectronic device array,
which can simultaneously sense and process images projected
onto the array, overcoming the obstacles of the traditional sepa-
ration modules.[167] Utilizing split-gate electrodes to electrically
dope the channel, tunable responsivity of each pixel in the sen-

sor can be formed. Based on this adjustable property, a classi-
fier and an autoencoder were demonstrated, which are trained by
supervised and unsupervised learning, respectively. Remarkably,
the sensor can classify patterns correctly within ≈50 ns, showing
exciting possibilities for future ultrafast machine vision applica-
tions. However, the experimentally demonstrated vision sensor
lacks the ability to store the weights of the ANN, which would re-
strict its scalability. Apart from integrated sensing and processing
functions, some efforts have realized all-in-one sensing, memory,
and processing capabilities in emerging vision sensors, which
offer tremendous potential for various applications, such as in-
telligent Internet of Things, autonomous vehicles, human-eye
biomimetic vision, etc.[37,168] Wang et al. presented a reconfig-
urable neuromorphic vision sensor based on WSe2/h-BN/Al2O3
heterostructure devices.[169] The devices can exhibit positive and
negative photoresponse under light illumination at zero and neg-
ative Vg, respectively, which are attributed to the photoconductive
effect and the defect-induced gate electric field screening effect.
The photoresponsivity with opposite polarity endows the devices
to simulate the biological characteristics of human retinal cells.
Then, a reconfigurable retinomorphic vision sensor was imple-
mented by connecting 13 heterostructure devices into an array.
As shown in Figure 5b, by controlling these devices with indi-
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vidual gate voltages, switchable image sensing and processing
functionalities including image stylization, edge enhancement,
and contrast correction were simultaneously realized. Besides,
the sensor can work as a convolutional neural network (CNN)
and perform image classification, which exhibits an accuracy of
100% with < 10 epochs when recognizing three various types of
letters. Very recently, Hong et al. reported an ultrasensitive vision
sensor with 2D perovskite-gated AlGaN/GaN phototransistors to
demonstrate similar functions.[170] Owing to the photo-enhanced
field-effect mechanism from the 2D perovskite, switchable posi-
tive and negative photoresponse can be realized in the phototran-
sistors under different gate voltages, where bidirectional synap-
tic functions are successfully emulated. Moreover, a neuromor-
phic vision sensor based on 3 × 3 phototransistor array was con-
structed, which is capable of achieving three reprogrammable
image preprocessing operations (Reverse, OFF-RF, and Emboss-
ing) by changing the applied gate voltages to each pixel and shows
an accuracy of ≈100% when recognizing three letters with three
colors.

In addition to reconfigurable image processing functions,
neuromorphic vision sensors have also been demonstrated for
polarization-perceptual applications by Xie et al. who proposed
a neuro-transistor based on 2D ReS2.[168] Utilizing the strong in-
plane anisotropy of ReS2, the neuro-transistor exhibits intriguing
polarization-sensitive properties under polarized-light stimuli.
The relationship between optical excitatory postsynaptic current
and polarization angle varies with polarization wavelength, thus
showing reconfigurable anisotropic vision. Besides, the neuro-
transistor is capable of realizing reconfigurable polarized filter-
ing functions, including low-pass, band-stop, and high-pass fil-
tering. This result gives inspiration to researchers on how to de-
velop applications by incorporating intrinsic properties of mate-
rials in addition to conventional visual sensor and opens more
possibilities in the direction of neuromorphic devices with opti-
cal modulation.

3.3. Ferroelectric Gating

Compared with the traditional electrostatic gate, the ferroelec-
tric gate is a more desirable approach to reversibly regulating the
channel carriers by switching the up and down polarization direc-
tions in ferroelectric.[38,41,171] The polarization direction is corre-
lated with the formation or depletion of the inversion layer in the
channel, thus affecting the nonvolatile shift of the threshold volt-
age and program of multiple channel conduction states. Here,
we highlight the material- and device-level achievements of fer-
roelectric field-effect transistor (FeFET) in recent years, where de-
sired reconfigurable properties in specific neuromorphic applica-
tions are discussed.

Inorganic ferroelectric oxides are the mainstream type of gate
material in FeFET. Despite the substantial development of ferro-
electric oxides so far, several challenges that will affect the po-
larization effect still need to pay attention to.[174,175] It is con-
ventionally believed that interfacial influences such as impu-
rity adsorption, traps, etc. will enhance the depolarization ef-
fect, thereby weakening the regulation. A promising avenue to
overcome this challenge lies in artificial design regulation. Gao
and coworkers intentionally introduced the interfacial states on

the ferroelectric Hf0.5Zr0.5O2 thin film during the annealing pro-
cess, where different annealing parameters such as tempera-
ture and duration allow for conscious control of the density of
surface states.[176] Combining the effect of ferroelectric polariza-
tion and interfacial charge trapping, the resulting MoTe2-based
FeFET performs a more stable switching behavior with recon-
figurable synaptic functions. The back-gate current and drain
current corresponding to the presynaptic and postsynaptic sig-
nals can be used to learn both STP and LTP by changing the
number or frequency of Vg. To further enhance the understand-
ing and development of the joint mechanism, Sun et al. proved
a new principle for the Bi4Ti3O12-MoS2 device whose architec-
ture can switch from a ferroelectric-semiconductor structure to a
ferroelectric-insulator–semiconductor structure.[172] Both ferro-
electricity and oxygen vacancies are fundamental requirements
to achieve such reconfigurability, where the strong domain-wall
pinning of oxygen vacancies contributes to the formation of in-
sulator as shown in Figure 5c. The dominant mechanism tran-
sits from charge dynamics to ferroelectric polarization with the
electric-filed-driven migration of oxygen vacancies. Apart from
the polarization-dominant long-term memory, the device can be
reconfigured as short-term memory with the synergistic effect of
charge and ferroelectric polarization. Synaptic learning rules in-
cluding STP and LTP with excellent linearity were achieved in
a memory configuration, coupled with the low-power transistor
configuration, showing strong potential for neuromorphic com-
puting by memory-transistor integration.

Besides the synapses, the ferroelectric-oxide devices are also
investigated to simulate the neurons, which is another funda-
mental component of brain-inspired neural networks. In 2018,
Mulaosmanovic et al. utilized HfO2-based FeFET to mimic piv-
otal neuronal dynamics.[55] By applying identical gate pulses be-
low the threshold voltage repeatedly, the device transitions from
OFF to ON, mimicking the integration of synaptic inputs of neu-
rons. Apart from the LIF behavior, a tailored negative reset pulse
is used to emulate the refractory period. Based on such simula-
tion capabilities, reconfigurability of synaptic and neuronal func-
tions was actually achieved. It is undeniable that achieving more
perfect neuron behavior with purely ferroelectric devices requires
more subtle design and deeper understanding, but this study un-
doubtedly presents huge possibilities for the future where ferro-
electric neurons and synapses can construct all-ferroelectric neu-
ral networks.

Ferroelectric polymers are another attractive gate material in
FeFET that has been extensively studied due to their indispens-
able merits including low-cost fabrication and excellent physi-
cal and chemical stability.[177] Based on the coupling between
ferroelectric materials and channel semiconductors, areas with
n- or p-type doping can be controlled to construct p–n junc-
tion. The effective and controllable doping capacity of organic
ferroelectric polymers has been demonstrated in some research.
For example, Zhai et al. reported the fine pn doping in MoS2
by local patterned ferroelectric polarization of organic P(VDF-
TrFE) polymer through the tip of atomic force microscopy in
2019.[149] Optoelectronic devices with switchable structures in-
cluding p–n diode and high gain p–n–p bipolar transistor were
successfully defined. Subsequently, arbitrarily altering the polar-
ity of MoTe2 was demonstrated using this ferroelectric polymer,
and a variety of memory devices were constructed.[178] Therefore,
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the universality of this doping strategy was confirmed, showing
great potential for realizing different functional devices required
in neuromorphic computing with limited hardware resources.
From the perspective of neuromorphic applications, an inspir-
ing study was proposed by Miao and co-workers who had al-
ready demonstrated that programmable doping can be realized
in graphene channels.[179] In their latest research, by connecting
two synaptic transistors composed of WSe2 channel and P(VDF-
TrFE) ferroelectric gate in a parallel structure, they found that
the polarization-dependent channels can be tuned as one n-type
and one p-type, corresponding to opposite synaptic weight update
behaviors.[173] As illustrated in Figure 5d, when a positive (nega-
tive) reward signal comes, only the gate1 (2)-controlled channel
is selected, thus increasing (decreasing) the total synaptic weight.
Thanks to this opposite plasticity, a kind of reward-modulated
STDP can be achieved, making the reconfigurable polarity a pow-
erful strategy to realize the training of SNN for reinforcement
learning with the much-simplified circuit.

In addition to FeFET where substantial research efforts have
been dedicated, some other architectures based on ferroelectric
were also proposed for further expansion in neuromorphic com-
puting with reconfigurable devices or functions. Tong et al., in
a bid to address the problem of lack of homogeneous devices
in neuromorphic hardware where peripheral circuits and mem-
ories are always necessary but physically separated, proposed a
WSe2-on-LiNbO3 architecture with reconfigurable functionality
at the device level as shown in Figure 5e.[147] The effect of fer-
roelectric polarization on channels is equivalent to that of elec-
trical doping, and therefore it is reasonable to construct p–n
diodes and p–n–p bipolar junction transistors (BJTs) with the
same device by the noninvasive control of the ferroelectric gate.
Moreover, the polarization modulation of the ferroelectric do-
main can affect the built-in potential in BJT, further improving
the on/off ratio of non-volatile memory. Multiple BJTs were cas-
caded to construct the operational amplifier with the realization
of signal rectification, amplification, and voltage comparison.
Since the operational amplifier used in the peripheral circuits
and memory cells can be realized by the same device architec-
ture, they directly achieved neuromorphic hardware that can be
utilized for binary classification based on the homogeneous de-
vices (Figure 5f), showing important academic significance and
application prospects for promoting the industrialization and ap-
plication of new neuromorphic hardware.

4. Phase Transition

In a broad sense, phase transition is the transition of a sys-
tem from one steady state to another under the control of ex-
ternal parameters. Along with the reversible transition, signifi-
cant changes in the physical properties of the system can be real-
ized such as electrical resistance, photoresponsivity, thermal con-
ductivity, and refractive index. This inherent variability of phase
transition materials brings about various approaches to drive the
phase transition, including temperature, strain, and electric field,
providing abundant degrees of freedom to regulate the function
of the phase transition device, which show great potential for
the reconfigurable functionality. According to the mechanisms of
phase engineering,[101,180] the effect of ferroelectric polarization,
crystalline-amorphous phase change, metal-to-insulator transi-

tion (MIT), and superconductivity on reconfigurability in neuro-
morphic computing are reviewed in this section.

4.1. Ferroelectric Tunnel Junction and Ferroelectric Diode

In recent years, ferroelectric devices as typical nonvolatile mem-
ory have been intensively studied due to their permanent and
switchable electrical polarization.[171,181,182] Switching the polar-
ization direction of ferroelectric domains has emerged as a
powerful tool for changing resistance according to the pur-
pose, thereby showing the potential for utilization in reprogram-
ming neuromorphic devices. To unveil the detailed mechanisms,
as a representative device, ferroelectric tunnel junction (FTJ)
with nanometer-thick ferroelectric layer sandwiched between two
electrodes is selected for the full discussion. In addition, ferro-
electric diode (FD) with ferroelectric semiconductor as the chan-
nel but without gate control also brings a new approach to the reg-
ulation of ferroelectric devices. For FTJ, the relationship between
tunneling electroresistance and ferroelectric polarization can be
revealed by considering the electron tunneling across the ferro-
electric layer and the screening of polarization bound charges.
Therefore, FTJ devices exhibit polarization-dependent tunneling
current. Recently, by applying voltage pulses to the device, junc-
tion resistance can be continuously tuned to multilevel inter-
mediate states, thus simulating the function of reconfigurable
synaptic cells. As another basic but crucial biological property,
STDP has also been demonstrated in FTJ devices (Figure 6a), ex-
hibiting the potential capabilities of FTJ for brain-inspired com-
putational architectures.

With the general goal of utilizing more states, many useful
methods have been explored from both theoretical and exper-
imental perspectives. Recently, Garcia et al. constructed a de-
tailed model to predict the synaptic behavior and learning rule of
FTJ.[183] Based on the direct relationship between the normalized
reversed area and junction resistance, the change of resistance
can be modeled by nucleation-dominated dynamics as a func-
tion of the voltage pulse. This theoretical model is essential for
the design of reliable and predictable devices, paving the way for
the customization of FTJ. Since then, researchers have begun to
further refine the reprogramming capability of FTJ synapses in-
cluding more distinguishable states and faster switching speed.
Based on an Ag/BaTiO3 (BTO)/Nb:SrTiO (NSTO) junction,[184]

Li et al. investigated the close relationship between device per-
formance and Schottky barrier, through modulating Nb-doping
concentration and the work function of the metal electrode. With
increasing Nb concentration, Schottky barrier height becomes
lower, and more voltage drops on BTO barrier, thereby sim-
plifying the pulse conditions required for polarization reversal.
With the combination of optimal Nb concentration and Ag elec-
trode with lower work function, the resulted device shows 32
nonvolatile resistive states under sub-nanosecond pulses (≈ 600
ps). As an encouraging result, the achieved ultrafast synapse fa-
cilitates the mass data processing, and demonstrates the prac-
tical potential of ANN simulation with high recognition accu-
racy (> 90%) on MNIST digits. An improvement scheme from
the perspective of ferroelectric material selection was also pro-
posed in their subsequent research,[53] in which (111)-oriented
PbZr0.52Ti0.48O3 (PZT) rather than traditional (001)-oriented PZT
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Figure 6. Reconfigurable neuromorphic devices based on various phase transition mechanism. a) Schematic diagram of pre- and post-neurons con-
nected by synapse and the ferroelectric memristor. Reproduced under terms of the CC-BY license.[183] Copyright 2017, published by Springer Nature.
b) Potentiation and depression processes. Reproduced under terms of the CC-BY license.[53] Copyright 2022, published by Springer Nature. c) Schematic
diagram of the 𝛼-In2Se3 six-terminal memristor. d) The relationship between postsynaptic current I12 and pulse stimulation from T6. Reproduced under
terms of the CC-BY license.[54] Copyright 2021, John Wiley and Sons. e) Schematic diagram of projected phase change memory. Reproduced under terms
of the CC-BY license.[193] Copyright 2015, published by Springer Nature. f) Circuit model and schematic diagram of the third-order electronic element.
Reproduced with permission.[57] Copyright 2020, Springer Nature. g) Resistive switching of RRAM-dominated mode under a large sweeping voltage.
h) Threshold switching of selector-dominated mode under a small sweeping voltage. Reproduced with permission.[58] Copyright 2022, John Wiley and
Sons.

was explored to induce two-step switching dynamics, conducive
to multilevel and stable intermediate ferroelectric domain states.
As shown in Figure 6b, using the variable voltage scheme with
10 ns pulse width, the artificial synapse analog in the form of
potentiation and depression presents remarkable linearity with
8-bit (256) conductance states. Particularly, this FTJ also achieves
sub-nanosecond switching speeds (≈ 630 ps) at low voltages (<
5 V), as well as fast speed of 300 ps at higher voltages, show-
ing substantial potential for low energy consumption. Owing to
these outstanding performances, the simulated CNN can achieve

a high recognition accuracy of 94.7%. The STDP rule is also
demonstrated, opening enormous opportunities for the develop-
ment of hardware synapses for on-demand customized applica-
tions.

In addition to traditional ferroelectric insulators, the research
on novel ferroelectric semiconductors has become much more
in-depth in recent years, thus paving the way for the develop-
ment of FD.[185,186] The current switching in a FD should be
dominated by the modulation of polarization charges on the
Schottky barrier at the metal/semiconductor interface. Notably,
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𝛼-In2Se3, as a special ferroelectric semiconductor, has attracted
much attention due to its simultaneous in-plane and out-of-plane
ferroelectricity.[187] The former in-plane ferroelectricity provides
a way to realize multi-terminal regulation through simple elec-
trode configurations.[188,189] As can be seen from Figure 6c, Xue
and coworkers demonstrated the polarization reversal of ferro-
electric 𝛼-In2Se3 channel induced by multiple terminal inputs.[54]

This in-plane resistance characteristic can be simply understood
as the result of polarization modulation on the Schottky bar-
rier at the metal/semiconductor interface. The third terminal
of memristors can also realize nonvolatile control on the cur-
rent flowing through the first and second terminals and ob-
tain an excellent modulating effect with a record switching ratio
over 103. Here, apart from inherent homosynaptic plasticity, het-
erosynaptic learning was also successfully emulated (Figure 6d),
which means this multiterminal planar memristor can imple-
ment reconfigurable behavior of different kinds of synapses. The
𝛼-In2Se3-based neutral networks can further realize high recogni-
tion accuracy in supervised and unsupervised learning manners.
What’s more, without changing the architecture of the device, the
planar memristor can naturally achieve Boolean logic functions
including OR and NOR. In short, a single 𝛼-In2Se3 memristor is
capable of realizing the functions of homosynaptic learning, het-
erosynaptic learning, and logic operations, which provides fun-
damental insights into energy-efficient and brain-inspired com-
puting systems with simple structures.

The performance of devices modulated by ferroelectric po-
larization can also be qualified by multilevel nonvolatile pho-
toresponses, which further expands reusability of ferroelectric-
modulated devices. For instance, Liu et al. designed a special
kind of ferroelectric photosensor with a simple two-terminal
structure of Pt/Pb(Zr0.2Ti0.8)O3/SRO, where the ferroelectric
Pb(Zr0.2Ti0.8)O3 layer endows the photosensor with reconfig-
urable photoresponse.[190] By applying different voltage pulses to
set the ferroelectric layer in distinguishable polarization states
before measuring the photocurrent, the polarization-modulated
photovoltaic behavior was carefully investigated. The resulting
photocurrent is in good consistency with the voltage pulse, which
means both positive and negative photoresponse can be realized
at the same device. Notably, this one-to-one correspondence fea-
ture for positive and negative weights will be critical for network
construction with less hardware quantity. Inspired by the excel-
lent synaptic behavior and switchable photoresponsivity of fer-
roelectric photosensor, they further built the ferroelectric pho-
tosensor network to implement the in-sensor MAC function (a
simultaneous image sensing-processing operation), as well as
deeper applications including pattern classification and edge de-
tection. This achievement demonstrates the integrated sensing-
memory-computing paradigms of ferroelectric neuromorphic
devices, providing even more new concepts for real-time machine
vision in the future.

As an emerging building block of neuromorphic computing
paradigm, ferroelectric has attracted much attention due to its
distinctive properties arising from inherent switching of spon-
taneous polarization and nondestructive electrical control meth-
ods, such as fast switching speed, multilevel intermediate states,
and large OFF/ON ratio. Considerable research efforts have been
devoted to demonstrating that inherent polarization reversal can
provide a great convenience for reconfigurable neuromorphic ap-

plications mainly focused on the mimicking of synaptic cells.
With the understanding of microscopic ferroelectricity, optimiza-
tion of synaptic reconfigurability has been executed to pursue en-
durable switching with more distinguishable multilevel states,
better linearity, greater variation range, and lower power con-
sumption. Despite tremendous advances, further investigation
and understanding are needed to break through current limita-
tions. Some new concepts, such as the utilization of ferroelec-
tricity based on the change of ferroelectric domain walls with
nanometer thick rather than domains, can be seen as novel
promising gateway toward brain-inspired neuromorphic com-
puting. Whether based on this novel mechanism or the famil-
iar domain mechanism, precise control, new measurement ap-
proaches, mature process fabrication, and advanced integration
technology are urgently required to satisfy the demands of neu-
romorphic computing in the future.

4.2. Amorphous-Crystalline Phase Change

Amorphous-crystalline phase change materials (PCMs), a spe-
cial class of materials characterized by their speedy tran-
sition between the crystalline phase and amorphous phase
accompanied by changes in electrical and optical proper-
ties, are regarded as a strong contender for a variety of
neuro-inspired applications.[191,192] In this subsection, we be-
gin with the fundamental physical properties and principles
of amorphous-crystalline phase change materials and then dis-
cuss the recent progress from the perspective of reconfigura-
bility concentrating on neuromorphic synaptic and neuronic
devices.

In the typical amorphous-crystalline phase-change devices,
phase-change material is commonly sandwiched between two
electrodes. The reversible resistance change between amorphous
and crystalline states is widely utilized to store information.[193]

The majority of the research in this area is based on Ge2Sb2Te5
(GST) and other materials in the Ge–Sb–Te ternary phase
diagram.[192] These PCMs remain amorphous under ambient
conditions while behave like fragile glass at elevated tempera-
tures. When the temperature is close to the transition tempera-
ture, the glass state crystallizes rapidly, manifesting as an abrupt
resistance drop in electrical properties. This heating process for
neuromorphic phase change devices is usually brought out by
Joule heat from electric and laser stimulation. A long and low
pulse, raising the temperature of the initial amorphous phase
over transition temperature while below the melting tempera-
ture, is used as the SET operation. The corresponding RESET
pulse is short in time while high enough to raise the tempera-
ture of crystalline phase over melting temperature, thus making
PCM amorphous again.

For phase change devices, a typical reconfigurable application
in neuromorphic networks is the emulation of weight update.
In addition to the two basic states of amorphous and crystalline
phases, more intermediate states can be realized by adjusting
the ratio of amorphous and crystalline phases. Although the tun-
able multilevel states those can emulate the weight of the bio-
logical synapses were fully proven,[194,195] an issue still needed to
be investigated and addressed is how to realize more stable in-
termediate states when constrained by rapid phase change with
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spontaneous structural relaxation and inevitable thermal distur-
bances. To this end, several methods including designing the
pulse shape,[196] optimizing the device structures,[197] and dop-
ing in PCM[198] to improve thermal stability were proposed and
demonstrated. As early as 2012, Kuzum and coworkers designed
a device structure comprising a bottom electrode with a small
contact area and a top electrode like a mushroom to realize par-
tial reset.[199] The resulting multistate phase change devices were
utilized to simulate synaptic behavior and learn the rule of STDP,
showing the ability to adjust the time constant and implement
different STDP kernels. Then, a projected phase change mem-
ory was proposed as a solution for resistance drift and noise in
2015.[193] The projection segment decouple the storage and re-
trieval task (Figure 6e) and can be further designed to realize
spatial geometric variations. Apart from removing these harm-
ful impacts, another thread is to make use of the resistance drift
effect to improve the precision of neural network and realize re-
quired stochasticity. A case in point was proposed by Shi et al.
with the classification precision promoted to 93.2% from 89.6%
after the introduction of the resistance drift effect, demonstrating
the advantages of spontaneous synaptic weight modification.[200]

Inspired by these improvements, the phase change synapses
demonstrate their potential in several SNN applications and keep
developing rapidly.

Another significant aspect of reconfigurability of phase change
devices is the construction of all-memristive neuromorphic net-
work, where switchable architectures between neurons and
synapses are needed.[191] The membrane potential of neurons
can be mimicked by the accumulation of electrical pulses in
PCM, while the firing occurs when the conductance reaches the
threshold. Subsequently, with a high but short pulse, the PCM
returns to the amorphous phase and the current exhibits cut-off.
Based on GST, Pantazi et al. experimentally demonstrated the ver-
satile architecture for synapse and neuron based on the mecha-
nism introduced above.[56] This neuromorphic architecture also
can be used for unsupervised learning to learn multiple corre-
lations, showing great practicability of PCM for all-memristive
neuro-synaptic implementations.

Notably, the innovation of PCM-based neuromorphic elec-
tronics is always motivated by further understanding of the
mechanism with focus on the design of the heaters, current
path, and the improvement of materials. In the long term,
such forward-looking guidance is generic and will continue to
guide researchers in the expansion of PCM applications. Due
to intrinsic thermally driven phase change, PCM inevitably suf-
fers from some stability effects, however, as mentioned above,
various approaches have been investigated to address or ex-
ploit these characteristics. Foreseeably, with the further re-
finement of the control methods, the phase change of PCM
can occur in a smaller area and at a faster rate, enhancing
the number of distinct synaptic states and energy efficiency,
which is urgently needed for next-generation neuromorphic
computing.

4.3. Metal-To-Insulator Transition

Metal-to-insulator transition (MIT) materials exhibit unusual in-
sulating property that the insulated state can transform to the

conductive state with drastic changes in electric, magnetic, opti-
cal, and mechanical properties when stimulated by some external
conditions. Although the physical mechanisms of MIT materials
require further investigation and understanding, several works
have demonstrated their potential as reconfigurable cells in neu-
romorphic computing.

Here, we place emphasis on Mott MIT memory, the transition
of which is derived from electron-electron interaction. When ap-
plying thermal energy, electric fields, and optical stimuli to Mott
memory, electron localization occurs and the memory converts
to a high conductance state. As has been extensively studied,
Mott MIT memory is a typical volatile device. When the exter-
nal signal is removed, the memory returns to a low conductance
state again. This intrinsic reversible transition in the form of
threshold switching (TS) provides tremendous support for sim-
ulating neuronal behavior and forming brain-inspired systems.
The threshold-dependent current opening behavior corresponds
to the LIF model of neurons, while the sharp current reduction
after the withdrawal of external signals can satisfy the need for
the refractory period of neurons.

A meaningful achievement based on NbO2 volatile Mott mem-
ristor was under the spotlight for the realization of the pro-
grammable isolated third-order element. As shown in Figure 6f,
each isolated element is composed of a memristor, a paral-
lel capacitor, and a series resistor, possessing three state vari-
ables related to temperature, voltage, and transition dynamics.[57]

By adjusting the applied voltage, different parts of its current–
voltage curve can be selected on demand to perform spe-
cific output characteristics. As the voltage increases, the out-
put characteristics can be summarized as sinusoidal oscilla-
tions, two-spike bursting, periodic single spikes, and damped
spikes, realizing a total of 15 neuromorphic phenomena includ-
ing LIF and refractory period adaptation by a single element.
Based on these reconfigurable output characteristics, an inte-
grated array was constructed to experimentally demonstrate ana-
logue computing, further verifying the complex computing ca-
pabilities of this system are similar to thalamocortical comput-
ing in the brain. This work fully realized and explored third-
order devices both theoretically and experimentally, opening
a new avenue for compact functional neuromorphic comput-
ing.

Apart from NbO2, another classic kind of MIT material is vana-
dium oxide. Although the debate on the driving mechanism of
vanadium oxide represented by vanadium dioxide (VO2) has not
yet reached a clear conclusion, a generally accepted view nowa-
days is that a coupling of Mott transition and Peierls transition
may exist in the VO2. For brevity, we still discuss it as Mott
material in a broad sense. Plenty of research has confirmed its
application of neuron function simulation in SNN and deeply
studied the influence of the frequency and amplitude of the in-
put signals on triggering spike output signals. On this basis, a
more ideal innovation is to realize switchable volatile and non-
volatile memory in VOx, thus providing the possibility to build
the synapse and neuron on the same device. Recently, Miao
et al. designed multi-mode V/VOx/HfWOx/Pt memristors to con-
struct fully memristive SNN, in which the HfWOx layer rep-
resents nonvolatile RS due to oxygen vacancy migration while
the VOx is a TS layer.[58] By changing the dominant mecha-
nism between RS and TS with different sweeping voltage, RRAM
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and selector mode can be realized. Compared with TS layer, the
thicker RS layer needs higher operating voltages. Therefore, a
large sweeping range from −3 to 3 V corresponds to synaptic
function based on RRAM-mode as shown in Figure 6g. On the
other hand, by presetting the RRAM layer to the high conduc-
tive state and applying a small sweeping voltage from −1.2 to
1.2 V to the device, the selector mode is selected (Figure 6h)
and the neural events can be emulated without any extra capaci-
tor. Combining these two modes of devices, synapse-neuron in-
tegration was realized, and a spiking CNN was constructed at
the level of networks to manifest the potential of these recon-
figurable multifunctional devices in tackling the dataset learning
task.

To sum up, we highlight two major advances in reconfig-
urable MIT-based devices for emerging neuromorphic comput-
ing. One emphasizes increasing the order of a single device,
that is, the complexity, in order to achieve more kinds of neu-
ron behaviors, thus improving the reconfigurability of the sim-
ulation function by an isolated hardware element. The other
is summarized from the perspective of the dominant mecha-
nism. The regulation of device mechanism realizes the volatile–
nonvolatile switching, thereby manifesting the reconfigurabil-
ity of fundamental neuromorphic components by construction
of the isomorphic devices for synaptic and neuronic simula-
tion. A common point is that these two achievements are not
purely using MIT materials, but also the coupling effect of dif-
ferent materials, whether it is from the perspective of enrich-
ing the modulation mechanism, or for the sake of replacing
peripheral electronic components. Collaborative efforts includ-
ing an in-depth understanding of MIT dynamics, selection of
materials for which the phase transition conditions are easy
to implement, as well as development of characterization ap-
proaches and integrated technologies will foster the growth of
this field.

4.4. Superconductivity

Although biologically inspired computing has shown extraor-
dinary potential power in promoting the popularity of artifi-
cial intelligence and machine learning algorithms owing to its
highly parallel computing paradigms with intrinsic fault toler-
ance and flexibility, conventional training platforms based on
digital-logic optimization schemes have encountered unwilling
difficulties like out-of-control energy consumption and associ-
ated memory bottleneck. Digital superconducting systems, as
a promising post-CMOS concept, employing cryoelectronic de-
vice technologies, have shown significant improvements in neu-
romorphic computing for both energy-efficient and speed-up
purposes.[201–207]

Josephson junctions (JJs)[59,61,62,75,208–210] and superconducting
nanowires[211–214] are the two principal forces that directly access
neuromorphic computing at the device level, with particular im-
plementations often exactly dual with each other.[77] For instance,
the ion channel dynamics of LIF neurons can be efficiently mim-
icked by two cascading JJs, and the emulation of neuronic relax-
ation oscillation can be realized by a nanowire resistor incorpo-
ration as well. In this subsection, we mainly focus on supercon-
ducting JJs and nanowires, which are two main up-and-coming

candidates for realizing the reconfigurable biomimetic functions
of neural networks.

4.4.1. Josephson Junctions

JJs are sandwich architectures with two superconductors sepa-
rated by a nanoscale non-superconducting barrier for weak link
coupling, promising diverse biological primitives at the single-
device level which derive from DC Josephson effect or AC Joseph-
son effect. Up until picometer-level focused helium ion beam
fabrication technology has been successfully employed by Cy-
bart et al. in 2015,[75] the direct manufacture of the insulated
tunnel barriers of JJs is achievable above liquid-nitrogen tem-
perature. In special, this kind of modern focused ion beam tech-
nology promises to construct planar JJs in a more reproducible
and scalable manner, thus endowing the JJs intrinsic relaxation
oscillations and spiking characteristics for neural functionality
at the unit-cell level. Besides, JJs can also be viewed as flux-
quanta valves which are vital elements for single-flux-quanta log-
ical circuits.[201] Significant efforts on neuromorphic applications
of JJs have popped up since then.

The hybrid modality of both synapses and neurons in a sin-
gle device is one of the important goals for pursuing versatile
reconfigurable neuromorphic hardware platforms. By using JJs
design, Goteti et al. proposed a spiking recurrent neural network
that features switchable collective response behaviors for both
synapses and neurons.[59,61] Based on superconductors and Mott-
insulating oxides, they employed a disordered array of JJ loops
that can be modulated by the dynamics of light ions and geomet-
ric asymmetry (Figure 7a). The flux quanta migration in the dis-
ordered system (e.g., propagation through JJs and storage in su-
perconducting loops with the form of circulating supercurrents)
with intricate reconfigurable energy landscapes is qualified as the
solid theoretical foundation for spiking behaviors of neurons and
synapses at the device level. First, dynamic threshold modulation
of LIF neuron can be achieved by configuring the junction criti-
cal current. The JJ critical current can be flexibly varied through
the adjustment of loop size and geometry of focused He-ion tun-
nel barrier (e.g., varying the dose of injected ion damage). When
changing the DC input, the threshold of neurons is correspond-
ingly reconfigured so that the distinctive kinds of neurons can
be dynamically defined.[59,60] Second, vortex dynamics, which can
be reprogrammed by differing geometric configurations of this
disordered array, result in exponential multiplicity of nonvolatile
synaptic weights and subsequently enable synaptic learning be-
havior (Figure 7b). The synaptic weight-updating principle solely
depends on electrically configuring the relative frequency and
amplitude of the input and feedback currents rather than indi-
vidual parameters. In their relevant work, these superconduct-
ing recurrent neural networks, in the form of highly compat-
ible functional combinations of synapses and neurons, are ca-
pable of being reconfigured to execute both supervised and un-
supervised learning.[61] Notably, the proposed superconducting
schemes achieve extraordinary operating speeds up to a few ter-
ahertz as well as superior energy efficiency in the order of atto
Joules per spike.

JJs can also incorporate with neuromorphic spintron-
ics to achieve a novel reconfigurable implementation of
ultralow-energy artificial intelligence schemes. Schneider et al.
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Figure 7. Superconductive mechanisms based reconfigurable neuromorphic electronics. a) Schematic of superconducting disordered spiking recurrent
neural networks with superconducting JJs. b) Evolution of synaptic states represented by different rates of flux flow. Reproduced with permission.[61]

Copyright 2022, The American Association for the Advancement of Science. c) Spin-dependent superconducting transport. Voltage–current character-
istics of JJ synapse in the magnetic disordered state (Top) and magnetic ordered state (Down). Reproduced with permission.[62] Copyright 2022, The
American Association for the Advancement of Science. d) 33 discrete reconfigurable states with symmetric switching properties which can be used for
DNN accelerators. Reproduced with permission.[213] Copyright 2020, IOP Publishing.

demonstrated neuromorphic computing with JJs and spin-
tronic nanoclusters, emulating artificial synapses with faster
operation and energy-efficient performance (Figure 7c).[62] The
dynamically reconfigurable JJs, consisting of silicon barriers
containing spintronic manganese nanoclusters and supercon-
ducting Nb electrodes, have been used as the key elements of
the artificial synapses. The researchers implemented artificial
synapses through field-free analog modulation of JJ critical
current. Under the influence of sub-attojoule electrical pulses,
numerous magnetic nanocluster configurations were dynam-
ically programmed, whose order is regarded as a function of
the superconducting critical current. Consequently, by chang-
ing superconducting current, the reconfigurable upgradation
of synaptic weight was qualified with a dynamic time scale
exceeding 100 GHz and energy consumption down to 3 aJ. Fur-
thermore, the implementation of non-Hebbian learning by using
such a reconfigurable JJ synapse was demonstrated, showing
great potential of JJs to construct programmable neuromorphic
devices.

Notably, the achieved neuromorphic superconducting elec-
tronics thus far have mostly relied on JJs, owning to their mature
fabrication and preferable properties like ultrahigh modulation
speeds and ultralow energy consumption (approximately on the
order of aJ per synaptic event).[215] Although JJs possess signifi-
cant advantages in superconducting neuromorphic computing,
the state-of-art digital JJs remain at a relatively low integration
density compared to von Nomanan architecture. Comprehensive
works on JJs need to be done in the future, and alternative plat-

forms such as nanowire-based devices offer a fresh perspective
on reconfigurable neuromorphic developments.

4.4.2. Nanowires

Quasi-1D superconducting nanowires (NWs), whose width and
thickness are comparable to or smaller than the Ginzburg–
Landau coherence length 𝜉 and magnetic penetration depth 𝜆,
respectively, own the intrinsic non-linearity and reconfigurable
superconducting-normal switching controlled by the threshold
current. Dominated by thermal dissipation and phase inco-
herence, NWs support gain improvement, high fanout, large
impedances, and compatibility with complementary metal oxide
semiconductor (CMOS), making them appealing to the hardware
schemes of neuronal spiking events. For example, parallelly in co-
operation with resistors, NWs are capable of producing relaxation
oscillations that mimic collective neuronal behaviors. However,
the oscillation frequency, dictated by the NWs’ high kinetic induc-
tance, is slower than that of JJs, consequently limiting switchable
binary operations. Nevertheless, scalability, robustness in noisy
circumstances, and fitness for fan-out make NWs continuously
draw researchers’ attention to neuromorphic computing such as
deep neural networks[213] and spiking neural networks.[211,214]

Onen et al. present a unit-cell neuromorphic crosspoint de-
vice based on superconducting NWs, aiming at the accelera-
tion of deep neural network trained by relieving hectic data
transfer.[213] Benefiting from the inherent carriers’ inertia of
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superconductors, the enhanced kinetic inductance can be easily
maintained which contributes to a higher number of reconfig-
urable non-volatile states. Based on the single-flux-quantum prin-
ciple, the researchers were able to produce 33 reprogrammable
states through applying narrow pulses, which are further uti-
lized in performing analog multiplication (Figure 7d). The re-
configurability has been further guaranteed by the extraordinary
symmetry characteristic of the non-volatile unit devices, deriving
from the internal discretized nature of flux quantization which
enables plenty of non-degraded cycling. These NW-based devices
further being assembled in a crossbar array have been described
for accelerating deep neural network training to implement the
calculation of derivatives, with the aid of a back-propagation al-
gorithm.

Apart from deep neural network accelerators, another emerg-
ing idea about superconductive NWs-based neuromorphic
computing is to emulate the biorealistic spiking neural
networks.[211,214] The sufficient employment of inherently
coupled relaxation oscillations of NWs forms the cornerstone
to simulate the essential behaviors of neurons, such as spiking
and firing, and further can be utilized for mimicking small-scale
spiking neural networks.[216] Although their negligible energy
consumption and miniaturization highlight the potential for
robust neuromorphic applications, superconducting NWs-based
electronics still suffer from inconsequent switching and slow
reset times which hinder their development a lot. Most im-
portantly, how to achieve a deeper reconfiguration and larger
scale of CMOS-compatible neural systems, is still difficult which
appeals to more research efforts than ever before.

5. Spintronics

With distinguished properties such as stochastic function,[217–219]

oscillatory,[220–222] low power consumption,[11,223] as well as non-
volatility and plasticity,[65,224,225] spintronic devices have recently
emerged as competitive candidate for neuromorphic comput-
ing, which is capable of transmitting information via the pre-
cise modulation of spin transfer torque (STT), spin orbit torques
(SOT), as well as isolated magnetic textures (e.g., domain walls,
skyrmions, artificial spin ice, and so on). These diverse ap-
proaches enable spintronics to be easily reconfigured in a more
compact and energy-efficient manner.[65,226–230] Here, we will fo-
cus on magnetic tunnel junctions, spin orbit torques, domain
walls, skyrmions, as well as artificial spin ice (ASI), and discuss
their implementations in reconfigurable neuromorphic comput-
ing.

5.1. Magnetic Tunneling Junctions

Magnetic tunneling junction (MTJ) possesses appealing char-
acteristics for brain-like computing such as extremely low read
power consumption, non-volatility, distinguished read/write en-
durance, high-speed voltage operation, and good scalability. Typ-
ical MTJ architecture consists of a paraelectric insulating tunnel
layer sandwiched by two ferromagnetic (FM) layers as schemat-
ically shown in Figure 8a, where the thicker one with constant
magnetization is called pinned layer, and the thinner one with

switchable magnetization is called free layer.[231,232] An antiferro-
magnet is usually coupled with the pinned layer to prevent the
switching of magnetization through exchange bias.

The conductivity of MTJ relies on the relative magnetization
orientation between two parallel FM layers, the modulating flex-
ibility of which constitutes the cornerstone of reconfigurability.
Parallel magnetizations of the two FM layers correspond to low
ohmic state (Rp) of MTJ, while highest resistive state (RAP) is ac-
cessed when the configuration is antiparallel. Current-induced
efforts, such as STT and SOT, can manipulate the magnetic ori-
entation of free layer in MTJ. It’s worth noting that MTJ is highly
compatible with back-end-of-line process of CMOS. Combined
with its geometric maneuverability that brings about numerous
functions, MTJ has shown great potential for neuromorphic com-
puting like stochastic neuron[224] and reservoir computing.[233,234]

As the mainstream of current research, STT-based
MTJ[222,223,233,235,236] exhibits diverse magnetic dynamics which
hold promise in reconfigurable neural networks, such as spin
torque nano-oscillator (STNO),[236] spin torque transfer RAM
(STT-RAM),[223,235] superparamagnetic tunnel junctions.[217] The
nonlinear transient dynamics of STNO can be leveraged to im-
plement diverse neuromorphic computing, such as spoken-digit
recognition and reservoir computing.[220,234,236] Romera et al.
presented that STNO can achieve temporal-pattern recognition
tasks by mimicking brain-like binding events.[221] Based on
the outstanding mutual-synchronization ability of STNO over
wide information ranges, a high recognition accuracy of 94%
was achieved by modulating the oscillator frequencies over
large direct input ranges. Meanwhile, multilevel STT-RAM
recently emerged as an alternative storage device for its ultralow
leakage and high integration performance, which is suitable for
the on-demand design of BNN accelerators.[235] By emulating
intrinsic error resilience of biological intelligence, a reconfig-
urable STT-RAM for acceleration of various learning models
has been demonstrated with precision scaling and switch-
able multiple modes of computing capacity, which provide an
energy-efficient approach for generally proposed neural network
accelerators.

5.2. Spin Orbit Torques

Beyond conventional STT-based modulation, SOT, as an ex-
tended electrically controlled spin torque on the basis of spin-
orbit interaction, highlights another promising approach for
reconfigurable neuromorphic electronics. For comparison, the
STT-driven MTJ is controlled by a perpendicularly polarized cur-
rent which always employs two-terminal configurations. While
the SOT arises from transverse nonpolarized current-induced
spin current, employing a three-terminal architecture for en-
hancing the durability of tunnel barrier and tunneling magne-
toresistance ratio.[237–239] The conventional physical mechanism
of SOT can be comprehended by the bulk spin Hall effect and the
interfacial Rashba–Edelstein effect. Compared with STT men-
tioned above, SOT-based devices present several advantageous
characteristics over that of STT including decoupled write/read
paths,[240,241] sub-nanosecond-scale switching of perpendicular
polarization,[242] and extraordinary charge-to-spin current conver-
sion efficiency.
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Figure 8. Spintronic mechanism-based reconfigurable neuromorphic electronics. a) Schematics of the STT-driven MTJ devices with typical two-terminal
architecture. Reproduced with permission.[239] Copyright 2020, John Wiley and Sons. b) Reconfigurable magnetization configurations of multilayers
for in-memory computation. Left: Schematic illustration of the triple-layer spintronic architecture. Right: Current-induced reconfigurable switching
of magnetization configurations. Reproduced with permission.[244] Copyright 2020, John Wiley and Sons. c) Reconfigurable NAND/NOR logic gates
driven by dynamics of domain walls. SEM image of a reconfigurable domain-wall logic gate (left); The relationship between bias, input, and output
for a NAND gate (middle); The truth table for reconfigurable Boolean computation. Reproduced with permission.[64] Copyright 2020, Springer Nature.
d) Skyrmion-based reconfigurable synapses. Reproduced with permission.[249] Copyright 2020, Springer Nature. e) Magnetization states of an ASVI
vertex. f) ASVI-based reservoir computing scheme. Reproduced with permission.[65] Copyright 2022, Springer Nature.

The importance of SOT-induced reversible magnetization
switching in developing reconfigurable in-memory logic and
multilevel memory with eco-friendly and excellent comput-
ing performance has been presented recently.[243–246] Based on
IrMn/Co/Ru/CoPt/CoO magnetic heterojunction device, Fan
et al. modulated a single device into four independently switch-
able magnetic configurations at will.[246] By operating the ori-
entation of external magnetic field and current pulse, flexible
manipulation of in-plane and out-of-plane exchange bias, re-
spectively stemming from IrMn/Co interfacial antiferromag-
netic coupling and uncompensated antiferromagnetic spin re-
orientation of CoPt/CoO interface, was simultaneously realized.
Benefiting from the reconfigurable on-demand modulation of
dual exchange bias, nonvolatile 10-state memory and multi-
ple logic functions at single-device level were then achieved,
presenting the prospect of multidimensional reconfigurable

neuromorphic applications such as binary convolutional neu-
ronal networks.[117,224,239,247] Additionally, by purely electrically-
controlled SOT switching, Zhao et al. modulated both exchange
bias and SOT switching and implemented reprogrammable com-
plete Boolean logic functions in a single heterojunction.[245]

Dong et al. achieved reconfigurable multifunctional in-memory
logic utilizing perpendicularly constructed [Pt/Fe(1-x)Tbx/Si3N4]n
multilayers,[244] which enable electrical reconfiguration of 2n

states through SOT (Figure 8b). These 2n memory states were
further qualified to conduct scalable Boolean logic functions with
high reconfigurability such as 2–2n decoders. And the neuromor-
phic reconfigurability was also envisioned by this 3D spin-orbit
architecture.

Reconfigurable logic-in-memory electronics mentioned above
have been substantiated of great potential in promoting the
energy-efficient neuromorphic computing such as BNNs. In
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contradistinction to approximate computing, deep learning as
a high-accuracy neuromorphic processing strategy has substan-
tial optimized computational performance for vast data. While
conventional deep learning model such as GPU-based convolu-
tional neural network has provided a feasible scheme, it still suf-
fers from incompatibility between operation speed and granu-
larity owing to the data-intensive computation. Based on single-
precision data communication, BNNs, have emerged as a prefer-
able solution for Deep neural networks(DNNs), and can be im-
proved with the reconfigurable in-memory logic using spin-orbit
torque magnetic random access memory (SOT-MRAM).[223,247]

Researchers have shown that the proposed SOT-MRAM can
perform deep learning tasks using reconfigurable in-memory
logic.[117] Benefiting from XNOR topology, this spintronic logic-
in-memory XNOR neural network enables an eco-friendly binary
convolution, achieving 1.2-fold energy reduction compared to the
state-of-art binarized convolutional neural network hardware.[248]

Notably, although the reconfigurable logic-in-memory
paradigms of SOT have been broadly implemented, other
properties of SOT such as stochastic behavior for mimicking
biologic probabilistic computation haven’t been experimentally
verified yet. Continuous efforts are actively being devoted to the
field of SOT-based reconfigurable neuromorphic hardware and
the emerging attempts to develop the performance of this kind
of devices go into two mainstreams: ultrafast electronics facili-
tated by antiferromagnetic layers or ultralow-energy electronics
derived from magnetic insulators. Moreover, novel mechanisms
for generating spin currents, such as orbit Hall effect, will
lead to deeper understanding of SOT and further improve the
modulation efficiency.

5.3. Domain Walls

Domain walls, as one kind of magnetic textures, are considered
to be prospective vectors of information on account of its speedy
motion, high density, non-volatility, and near-zero leakage. Em-
ploying multilevel devices based on domain walls, nonvolatile
memory for artificial synapses can be smoothly implemented
where the broad freedom of neuromorphic parameters can be
stimulated by displacement of domain walls. Moreover, the do-
main wall can be reversibly written, erased, and set into multiple
reconfigurable electronic states which is important for general-
purpose neuromorphic computing. Nevertheless, the full-blown
implementation of domain walls in post-CMOS computing ar-
chitecture is often limited by requirement of extra magnetic field
for its manipulation and clocking, significantly impeding their
large-scale integration. Here, we will introduce some state-of-art
attempts in magnetic field-free domain wall-based reconfigurable
device which present potential in neuromorphic computation.

The magnetic field-free scheme for reconfigurable logic-in-
memory devices using full-electrical-control domain-wall race-
tracks was demonstrated by Luo et al.[64] Based on the out-of-
plane magnetic Pt/Co/AlOx NWs with V-shaped in-plane re-
gions, the fundamental Boolean logical values “0/1” was realized
according to the polarization directions. These reversible trans-
formations of logic are conducted by SOT-induced domain wall
motion,[250–252] utilizing chiral interconnection[253] of compet-
ing magnetic anisotropy and interfacial Dzyaloshinskii–Moriya

interaction,[254] which are exploited to achieve a basic inverter
unit with pJ-level energy consumption. They further demon-
strated a reconfigurable NAND/NOR gate (Figure 8c), the recon-
figurability of which originates from the on-demand switchable
orientation of electrical bias. Moreover, based on similar physical
mechanism, binary full adder, and all Boolean logical functions
can be implemented by directly cascading, encouraging the way
for logic-in-memory neuromorphic implementations.

Beyond domain wall-based reconfigurable logics, all-electric
magnetic DNNs accelerators applying intrinsic linearity of do-
main walls also attract many attentions. Siddiqui et al. demon-
strated a purely electrically-controlled domain-wall-based neuro-
morphic accelerator that can implement both multilevel linear
synaptic weight and programmable nonlinear neuronal activa-
tion function generation.[63] Benefiting from as-adopted three
terminal MTJ architecture, current-induced SOT can manipu-
late domain wall dynamics in a field-free manner. This kind of
programmable design allow domain-wall-based devices to be en-
gineered into multiple reconfigurable roles within a neuromor-
phic accelerator, such as synaptic weight generators and neu-
ronal behavior simulators. The proposed domain-wall technology
achieves nanosecond-level operation and pJ-level consumption,
which present bio-comparable power efficiency and versatility ad-
vantages over other hardware implementations for realizing deep
neural networks.

5.4. Skyrmions

Skyrmions, one of the topologically protected magnetic tex-
tures that stabilized by the Dzyaloshinskii–Moriya interaction,
were first proposed for describing hadron and observed in mag-
netic material.[248,255,256] Benefitting from their nanoscale di-
mension, non-stochastic characteristics derived from topological-
screening depinning, and relatively low threshold current com-
pared with domain walls, skyrmions show huge potential in high-
integration and low-power neuromorphic electronic paradigms.

Previous works show that the conversion stimulated by
motion and annihilation of skyrmions have been utilized to
realize reconfigurable Boolean logic gates,[257] neuronal LIF
characteristics,[258,259] synaptic multiple plasticity,[249,260] and
other biorealistic functions. Particularly, biologic neurotransmit-
ter dynamics can be emulated by engineering skyrmions, owning
to their particle-like behavior and thermal Brownian motion.[218]

Additionally, Luo et al. designed a reconfigurable skyrmion logic
device with complete Boolean logic functions.[257] Benefiting
from pure-skyrmion mechanism, the motion and interaction of
skyrmions can be simply manipulated utilizing terminal volt-
age to implement device-level reconfigurable logics (e.g., AND,
OR, NOT, NAND, NOR, XOR, and XNOR), driven by spin-orbit
torque, skyrmion Hall effect, skyrmion-edge repulsions, and the
voltage control of magnetic anisotropy effect.

In the context of neuromorphic computing, nonlinear re-
sistive effect of skyrmion devices, deriving from incorporation
of tunneling non-collinear magnetoresistance,[261,262] anisotropic
magnetoresistance and spin-torque effects,[263] allows for pro-
cessing unconventional computing event such as reservoir
computing.[264,265] Meanwhile, the demonstration of reconfig-
uring the input data streams has been smoothly implemented
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by thermal diffusive dynamics of skyrmions.[218,228] Zázvorka
et al. employed pure skyrmion diffusion in multilayer system
to achieve a skyrmion reshuffler, which could be controlled by
both out-of-plane field and current injection. Such a skyrmion
reshuffler is the core building block for the novel energy-
efficient stochastic computing and possesses extraordinary fi-
delity which can be subsequently qualified as LIF neurons.[218]

Furthermore, Song et al. demonstrated all-electric skyrmion-
based synaptic devices at room temperature, which utilize the
current-controlled SOTs to induce generation and annihilation
of skyrmions.[249] The dynamics of skyrmions could imitate 16
reconfigurable synaptic state parameters by controlling the num-
ber of skyrmions (Figure 8d). This skyrmion-based synapses can
further imitate neural networks using array architecture, which
achieve distinguished pattern recognition with an accuracy of
≈89%.

The development of skyrmion-type devices for neuromorphic
applications is still in infancy, where the inevitable disadvantages
such as large unit-cell area and relatively low on/off ratio sig-
nificantly hinder their prosperity. However, the distinct particle-
like and topographic-defect immunity of skyrmion-type spintron-
ics highlights their superiorities over conventional RRAM-based
schemes, presenting their enormous potential in reconfigurable
neuromorphic applications.

5.5. Artificial Spin Ice

Artificial spin ice (ASI) is a sort of metamaterials that employs
nanomagnets for representing manufactured macrospins where
geometrical frustration can be artificially accommodated.[266]

Typical ASI system sustains two main magnetic textures includ-
ing Ising-like macrospins in nanoislands and vortex states in
nanodiscs. By tailoring magnetic elements through nanofabrica-
tion, complex “designer” effects are observed, endowing the ASI
systems large freedom space, which subsequently enable multi-
plicity of programmable configurations through external applied
magnetic field. Reconfigurable, non-volatile artificial magnetic
ice, which is now often referred to as ASI, was introduced as
early as 2006 by Wang et al. to study the accommodation of ge-
ometrical frustration in a square lattice of elongated interacting
ferromagnetic nanoislands.[267] Since then, various experimental
phenomenon such as spontaneous long-range ordering,[268,269]

emergent “magnetic monopole” defects,[270,271] and the tailorable
material-by-design properties,[11,272] have been explored for the
employments of ASI devices, showing great material-level recon-
figurable potential in neuromorphic computing.

Beyond the aforementioned advantages of ASI, one of the dif-
ficulties is how to realize long-range ordered orientation of ASI
configurations which might provide novel perspectives on spin-
tronic research. This issue was solved by Wang et al. in 2016 by
using three-rotational-symmetry ferromagnetic nanoislands to
replace conventional fourfold symmetry square lattices.[229] Gart-
side et al. in 2018 provided approaches to the nearly all-around
potential microstates of ASI induced by geometrical frustration,
from ground state to high-energy “monopole-chain” state.[268] By
taking advantage of reconfigurability in ASI system, they fur-
ther achieved microstate-dependent mode-hybridization and an-
ticrossings which invite a host of Boolean logic and neuromor-
phic applications.[223]

Reconfigurable ASI structure can also be combined with
superconductors,[273] exhibiting distinct high degeneracy and
subsequently diverse microstates, which could illuminate an ap-
proach to modulate reconfigurable neuromorphic state parame-
ters by controlling ASI magnetic configurations.[274] Wang et al.
successfully derived multiplicity of eight configurations of mag-
netic charges by utilizing 2D magnetic field-assisted magnetic
force microscopy patterning technology.[229] They further demon-
strated globally reconfigurable write-read-erase multifunctional-
ity by simply programming in-plane vector magnets at room
temperature. This rewritable ASI provides a precise-control tem-
plate of unit-cell-level state parameters, which shows the poten-
tial for neuromorphic synaptic devices. Beyond the conventional
ASI platforms which comprise a single magnetic texture, another
emerging idea is to engineer the macrospin-vortex bistability
for richer reconfiguration of neuromorphic electronics. Gartside
et al. demonstrated a brain-inspired hardware platform with “ar-
tificial spin-vortex ice” (ASVI),[65,67] which promise to construct
a lower-energy reservoir-computing system using spin-wave mi-
crostate fingerprinting (Figure 8e). The ASVI is a nanomagnetic
array with strong interaction presented by tailoring nanocom-
ponents, typically comprising two Ising-like macrospin orienta-
tions and two vortex chirality. Benefiting from this fourfold bi-
textured property and non-volatile magnetic states, ASVI offers
physic memory phenomena and magnonic reconfigurability re-
flected by huge frequency shift (far surpasses the GHz shifts
available in conventional all-macrospin ASI). The researchers
further employed the ASVI to implement a magnonic reservoir
computer, an unconventional genre of neural network which
particularly appropriate to dynamical situations (Figure 8f). The
ASVI-based computer could realize chaotic time-series forecast-
ing and study linear and non-linear signal transformations with
ultralow mean squared error, which is competitive with existing
reservoir computing schemes. This extraordinary performance of
ASVI as neuromorphic building blocks was attributed to indefi-
nite non-volatile data storage, electrical connection-free scheme,
and high reconfigurability.

6. Photonics

Significant progresses have been made in neuromorphic com-
puting in the field of electronics, from exploring potential
promising electronic information materials, which have been
used to emulate flexible, robust, and vivid basic components
of ANNs (e.g., synapses and neurons),[10] to building energy-
efficient neuromorphic architecture based on conventional
CMOS.[13,14,89] Although these emerging electronic elements and
frameworks have provided an effective way for emulating an-
imate neural networks to speed up the processing of tasks
in mathematical processing,[47,275] image classification,[167,276]

speech recognition,[277] etc., parallelly solving multiple complex
problems efficiently as the biological brain on distributed elec-
tronics with dense hardwire interconnections is still an enor-
mous challenge due to latency and bandwidth constraints.[278]

Photonics based on optical interconnections and linearity are
promising approaches to alleviate this problem and provide an-
other angle of view to accelerate neuromorphic computing.

Inherent boson property which enables lights of several wave-
lengths or modes to transmit through the same photonic data
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Figure 9. Neuromorphic photonic synapses. a) Broadcast-and-weight protocol using MRRs as tunable filters to weight WDM signals. Reproduced
under terms of the CC-BY license.[286] Copyright 2017, The Authors, published by Springer Nature. b) OIU that compose each layer of the neural network
to implement real-valued matrix. Reproduced with permission.[288] Copyright 2017, Springer Nature. c) Photonic synapse implemented with discrete
PCM islands. d) Pre- and postsynaptic signals with no time delay under STDP rule. Reproduced with permission.[289] Copyright 2017, The American
Association for the Advancement of Science. e) Schematic of the non-volatile reconfigurable photonic switching unit. Reproduced with permission.[290]

Copyright 2022, IEEE. f) Modulation of ferroelectric domain states using consecutive pulses with different voltage amplitude. Reproduced under terms
of the CC-BY license.[291] Copyright 2021, The Authors, published by IEEE.

link at ultrahigh speed makes photonics uniquely advantageous
in bandwidth, latency, and propagation efficiency, averting many
trade-offs in neuromorphic electronic approaches.[22,278] More-
over, silicon-integrated photonics can host active and passive
optical (or optoelectrical) components simultaneously enabling
competitive integration density,[279,280] and allowing implemen-
tations for linear operations in the optical domain.[281] So far,
many neuromorphic computing techniques have been demon-
strated based on integrated photonics and free-space optics to
realize neural isomorphism (usually mathematically isomorphic
to neural network algorithm), ranging from critical elements in
different kinds of neural networks to specialized hardware ac-
celerators in AI solutions.[92,282,283] Although photonics possess
exclusive advantages over electronics in parallelism and linear
operations, new challenges such as thermal stability, all-optical
nonlinear elements, and light sources on-chip call for in-deep
investigations.[22] Thus, neuromorphic photonics should not be
expected to develop separately, instead, continuous research is re-
quired to combine the advantages of photonics and electronics,
toward an ultimate neuromorphic photonic architecture.

In this section, we introduce photonics for matrix multipli-
cation, nonlinearities, and neuromorphic architectures, corre-
sponding to biological synapses, neurons, and neural networks,
and focus on the reconfigurability of these implementations.

6.1. Photonic Synapses

Neuronal dense connections weighted by synapses are the key for
rich dynamics in biological brain. To mimic various behaviors of

the brain, reconstruction from physical primitives for connected
units and strengths has been proven to be an effective method.
The connected strengths can be represented by a weight matrix
that can multiply input signals of neurons; While the connected
units, namely neurons, require not only nonlinear responses but
also fan-in and cascading property.[22]

One kind of optical implementation for synapses is based
on wavelength. Optical signals are weighted by tunable waveg-
uide components and can be accumulated through wavelength-
division multiplexing (WDM), which is widely employed in the
demonstrations of multiwavelength synapses. By using WDM,
a protocol called broadcast-and-weight was proposed to control
connections and weights.[284] It consists of a group of nodes shar-
ing a common waveguide where a unique transmission wave-
length is assigned to each node. With reconfiguring a spectral fil-
ter bank at each node’s front-end, various network patterns could
be determined. Based on this protocol, microring resonators
(MRRs) were used as tunable filters to weight WDM signals, and
a recurrent silicon photonic neural network was demonstrated
successfully (Figure 9a).[285,286] Another way to weight connec-
tions is based on optical modes. A real-valued matrix may be
represented as M = UΣV† through singular value decomposi-
tion, in which U, V† can be implemented with an array of beam-
splitters and phase shifters,[287] while rectangular diagonal ma-
trix Σ can be implemented using optical attenuators.[281] To im-
plement any weight matrix M, optical interference unit (OIU)
was proposed and demonstrated experimentally in a silicon pho-
tonic integrated circuit using a mesh of 56 reconfigurable Mach–
Zehnder interferometers (MZIs), as shown in Figure 9b, each
of which has a phase shifter between two directional couplers,
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followed by another phase shifter.[288] By setting internal and ex-
ternal phase shifters, the MZI splitting ratio and differential out-
put phase were controlled and the programmable nanophotonic
processor which consisted of four layers of OIUs (with four op-
tical neurons to add nonlinearities) was implemented, achieving
recognition accuracy of 76.7% on the vowel identification test set.

In addition, hardware synapse implementations that modu-
late effective refractive index of waveguides by optical or electri-
cal actuation approaches have been demonstrated. Cheng et al.
reported an all-optical synapse using tapered waveguide struc-
ture and discrete chalcogenide PCM islands (Figure 9c),[289] en-
abling effective control of non-volatile synaptic weights by chang-
ing the number of optical pulses, and the STDP rule in biological
system was mimicked by arranging the pre- and post-synaptic
signals (Figure 9d). To obtain scalable integrated and energy-
efficient switching units in a CMOS-compatible process, non-
volatile reconfigurable photonic switches actuated by silicon PIN
diode heaters were demonstrated by Zheng et al,[290] as shown
in Figure 9e. They integrated chalcogenide Ge2Sb2Te5 on PIN
diode heaters, where the electrical pulse-generated Joule heat
can trigger phase transitions and thus control the refractive in-
dex of waveguides. Subsequently, electrically modulated switch-
ing units on microring resonators were fabricated, with high en-
durance (> 500 cycles) and near-zero additional insertions loss
(≈0.02 dB μm−1). Although PCMs are commonly used for non-
volatile photonic applications due to long endurance, small foot-
print, and high scalability, they face challenges in controlling the
phase transitions and asymmetry in the energy when transform-
ing between amorphous and crystalline states,[291] limiting the re-
peatability of potential reconfigurable functions. Recently, an al-
ternative solution was presented by Geler-Kremer et al.[291] By us-
ing ferroelectric BaTiO3 thin films embedded in compact waveg-
uides, the switching of ferroelectric domain corresponds to the
change of electro-optic response. Therefore, a brand-new non-
volatile modulation method depending on the pulse width, am-
plitude, and repetition of control signals was provided (Figure 9f).
Compared with traditional non-volatile photonic elements which
mostly focus on PCM, the BaTiO3-based phase shifter demon-
strated salient metrics performance, realizing eight repeatable,
distinguishable, and equally spaced states. For next-generation
programmable photonic platforms, kinds of non-volatile, recon-
figurable phase shifters will be well applied and likely to promote
the development of the field.

6.2. Photonic Neurons

Pure linear operations are not enough to process information effi-
ciently. Thus, emerging photonic approaches to realize neurons’
nonlinearities have been proposed. Huang et al. demonstrated
a reconfigurable photonic-electronic neural network which in-
tegrates photonic neurons on chip and can be programmed to
perform various tasks.[292] As shown in Figure 10a, the input
signals are weighted in parallel with MRRs and then summed
by a balanced photodetector implementing positive and nega-
tive weights, generating a photocurrent to modulate the trans-
mission of the ring modulator serving electro-optic nonlinear-
ity. It involves the nonlinear conversion of optical- into electrical-
and back into optical signals in this process. All-optical neurons

do not expect the transmission signal in the form of photocur-
rent, but instead, represent it as the changes in material proper-
ties. A neuronal ring resonator with independent integrated PCM
cells was implemented to generate spike signals (Figure 10b),[293]

in which the neuronal PCM cell can be switched between the
crystalline and amorphous states depending on the incoming
weighted power of pre-synaptic neurons, changing the optical
resonance condition of the ring and propagation loss to emulate
the basic integrate-and-fire function of the neuron.

In addition to artificial neurons relying on integrated photonic
devices, ones based on free-space photonics have been imple-
mented into the all-optical neural network. For example, Zuo
et al. achieved different nonlinear activation functions for var-
ious neurons by placing the coupling-probe beams at different
positions of the magneto-optical trap, while the linear operations
were implemented by spatial light modulator (SLM).[294] The op-
tical neural networks in free-space will be described in detail
in the next part. While specialized photonic neurons have been
widely reported, we believe general-purpose photonic integrated
signal processors (PISPs) may also be used to perform reconfig-
urable signal processing functions, which are potentially applied
to process neuronal signals. Liu et al. proposed a fully reconfig-
urable PISP based on an InP-InGaAsP material system.[295] By
incorporating nine semiconductor optical amplifiers and twelve
current-injection phase modulators in the unit which consists of
three active MRRs and a bypass waveguide, three signal process-
ing functions including temporal integration, temporal differen-
tiation, and Hilbert transformation were obtained.

6.3. Photonic Neural Networks

Most implementations of photonic neural networks fall into two
broad categories based on integrated photonics and free-space
optics, respectively. The main differences between these efforts
are attributed to the concrete method to emulate synapses and
neurons as well as network topology. As we discussed above, var-
ious optical hardware configurations can be implemented to re-
alize weighted connections (synapses) and nonlinear activations
(neurons), and thus developing one or more general protocols
for assembling these basic elements may unlock more powerful
and reconfigurable networks. And the network topology, which
describes the interconnections between neurons, mainly centers
on feed-forward and recurrent structures in most of the current
demos.

Figure 10c shows one feed-forward and spiking architecture of
a single layer from an optical neural network integrating a WDM
multiplexer, PCM synapses, and ring resonator neurons.[293] In
this scalable architecture, supervised and unsupervised learning
is enabled and pattern recognition can be demonstrated directly
in the optical domain. Figure 10d shows the matrix multiplication
unit based on MZIs, and nonlinear activation function is consid-
ered to associate with a realistic saturable absorber.[288] This ar-
chitecture also enables new methods to train an optical network
without back propagation and gradient descent. By using forward
propagation and the finite difference method, the gradient of
each parameter could be obtained and a vowel recognition prob-
lem was solved. Furthermore, combining semiconducting few-
photon light-emitting diodes with superconducting-nanowire
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Figure 10. Neuromorphic photonic neurons and networks. a) Photonic neuron implemented with balanced photodetector (BPD) and MRR mod. BPD
generates weighted photocurrent with a bias current and modulate the transmission of the MRR modulator via free-carrier injection. Reproduced with
permission.[292] Copyright 2021, Springer Nature. b) The all-optical spiking neuron using PCM cells. Reproduced with permission.[293] Copyright 2019,
Springer Nature. c) A single layer of all-optical neural network integrating a WDM multiplexer, PCM synapses, and ring resonator neurons. Reproduced
with permission. Reproduced with permission.[293] Copyright 2019, Springer Nature. d) Experimentally demonstrations of coherent nanophotonic neural
network enabling both matrix multiplication and attenuation. Reproduced with permission.[288] Copyright 2017, Springer Nature. e) Left, the diagram
of diffractive processing unit (DPU) as a computing building block. Right, a DPU implementation using reconfigurable optoelectronic devices. f) A con-
ceptual neuromorphic photonic processor architecture employing both electronic and emerging photonic technology. Reproduced with permission.[292]

Copyright 2021, Springer Nature.

single-photon detectors to behave as spiking neurons which con-
nect via optical waveguides, superconducting optoelectronic de-
vices with tunable weights of connection were implemented.[76]

The weight updating mechanism is demonstrated with the em-
ployment of electromechanically actuated waveguide couplers, in
which the distance, as a function of the synaptic weight matrix,
can be modulated by the externally applied voltage which gives
rise to an attractive force. Benefiting from the proposed reconfig-
urable neuromorphic elements, a multilayer perceptron and an
artificial visual system with temporal processing and interference
suppression were proposed.

In addition to integrating photonic devices on chip, free-space
diffractive network is another kind of implementation for neu-
romorphic photonics. Zhou et al. proposed the reconfigurable
diffractive processing unit (DPU) based on diffraction light,
which could be programmed to change its functionality and build
different types of ANNs including diffractive deep neural net-
work, diffractive network in network, and diffractive recurrent
neural network.[296] In DPU, as illustrated in Figure 10e, a dig-
ital micromirror device and a SLM (as an important component
to achieve reconfigurability), are used to quantize and convert
unit input data to a complex-valued optical field to implement
the input nodes, which are connected to output neurons with
the light diffractive connections determined by the modulation of
the wavefront. And a CMOS sensor is selected to sum weighted

signals and implement activation function during the photo-
electronic conversion. Moreover, an active reflective graphene-
plasmonics-based SLM was employed in the terahertz DONN
with validation accuracy >94% on the MNIST dataset.[297] The
above examples show exciting and promising applications of ma-
chine learning due to reconfigurable key elements and scalable
photonic platforms, while the critical challenges are co-designing
of electronics and photonics on an unified processor architecture.
A conceptual photonic processor was described (Figure 10f),[292]

which needs a perfect silicon photonic platform converging both
mature and emerging technologies such as monolithic fabrica-
tion, tunable photonic elements, and photonic neural networks.
Depending on modern integrated platforms for reconfigurable
photonics, neuromorphic photonics exhibits great potential to ac-
celerate information processing.

7. Integrated Reconfigurable Neuromorphic
Computing

Brain-inspired computing, introduced for apperceptive and
cognitive assignments, contains two mainstreams: computer-
science-oriented ANNs and neuroscience-oriented spiking neu-
ral networks (SNNs),[12] which have made substantial pro-
gresses in dealing with intricate large data.[92] Computer-science-
based ANNs, as the mature approach, partly assimilate the
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characteristics of cortex in light of spatial complexity, exhibit-
ing fairly high potential in image recognition, language classi-
fication, and so on. In contrast, SNNs, as a more biomimetic
approach, adopt temporally sparse spikes training as well as
event-driven and localized information processing strategies in
a massively parallel manner, exhibiting great potential for re-
leasing reluctant resource occupation by minimizing data trans-
formation, which aims at fully exploring the efficient capac-
ity of neuromorphic computing.[4,9,79] While neuromorphic sys-
tems have shown well-known eco-friendly advantages, it remains
difficult to be compatible with mature preparation technology.
Here, we will introduce a set of strategies, including CMOS-
based and resistive random-access memory (ReRAM)-based neu-
romorphic systems, which provide opportunities in promot-
ing the development of integrated reconfigurable neuromorphic
computation.

7.1. Neuromorphic integration Implemented with CMOS-Based
Devices

With the prosperity of the mature silicon technology, CMOS-
based neuromorphic integrated system is one of the headmost
neuromorphic computing paradigms, which can take full advan-
tage of cutting-edge silicon technology and show great compati-
bility with other artificial intelligence technologies.

As one of the most extensively adopted reconfigurable archi-
tectures, field programmable gate array (FPGA) with matrix of
configurable logic blocks and complex interconnection routing
to be customed on demand, has been broadly used as acceler-
ator board for neuromorphic hardware owing to the flexibility
of semi-customized characteristics.[88,97,298–300] Reconfigurability
of FPGA mostly stems from reprogrammable routing architec-
ture which consumes ≈ 90% of the FPGA resources. Meanwhile,
look-up tables, the key functional component of configurable
logic blocks, can be fully assembled to realize programmable
logic functions, which also contribute to FPGA’s reconfigura-
bility. Inspired by the human brain’s biologically-efficient par-
allel capability, SpiNNaker, one of the FPGA-based SNN archi-
tectures, has been proposed for real-time simulation of neuronal
hardware.[88] The multiprocessor adopted globally asynchronous
interconnection infrastructure for power efficiency and encapsu-
lated locally synchronous sections in between for decreasing time
delay, which marginally reduced the trade-off between time and
energy efficiency. Benefiting from the extraordinary reconfigura-
bility of SpiNNaker’s multiprocessor which contains 18 ARM968
processors to be dynamically customized, this scheme is capa-
ble of emulating biomimetic connectivity to sufficiently config-
urate billions of spiking neurons and achieving high flexibility
in the case of invoking FPGA. Optimized algorithm-promoted
SNN also extends a promising step toward system-level emula-
tion of SNN. Wu et al. proposed a reconfigurable SNN scheme
employing fast-convergence coordinate rotation digital computer
(CORDIC) algorithm for faster real-time STDP learning and
higher energy efficiency.[97] Utilizing time-division multiplexing
strategy assisted with FPGA, dynamical reallocation of the neu-
ronal spiking data into corresponding synaptic arrays was imple-
mented, which is conducive to enhancing hardware efficiency
(Figure 11a). This programmable SNN outperformed state-of-

the-art CORDIC schemes by 38.5−45.3% in light of online learn-
ing speed and power efficiency.

Apart from mature FPGA-inspired neuromorphic platforms
that mimic biological neural networks from the functional
perspective,[298–300] another important thread is to structurally ap-
proximate the biological functional components from the funda-
mental device perspective which highlights a more biomimetic
approach.[13,89] Individual neuron with various behavior func-
tions can be independently reconfigured with a time-multiplexed
circuit and each synaptic weight can be flexibly modulated, which
make for successful implementation of device-level reconfigura-
bility. At the system level, reconfigurability derives from arbitrary
intra-layer neuron-to-axon intercalation by utilizing the point-to-
point (P2P) routing topological strategy (Figure 11b). At the ap-
plicability level, benefiting from event-driven property and seam-
less scalability, researchers can successfully manage TrueNorth
chip to execute multi-object detection and classification and the
power is down to 26 pJ per synaptic event. Although TrueNorth
chip design is capable of real-time multi-task processing, on-
line learning ability is desperately required to expand on-demand
neuromorphic applications. A few implementations about the re-
configurable on-line learning SNN processor have been demon-
strated, such as ROLLS processor comprising 256 neurons and
128K synapses,[95] but the limited integration of on-line learn-
ing chip significantly hinder further improvements. Compared
with TrueNorth chip, Inter’s Loihi chip features an outstanding
online-learning ability based on manycore mesh architecture,[89]

which possesses a microcode-driven programmable learning en-
gine that allows Loihi to perform real-time SNN training and
to obtain a broadest possible class of SNN learning rules. At
the specific implementation standpoint, Loihi pioneered to in-
tegrate the features of programmable synaptic spike time con-
stants, multiple spike trace, triple synaptic state variables, and
spike rewarding, all of which contribute to the reconfigurabil-
ity of Loihi’s SNN learning rules. Additionally, brain-inspired el-
ements (i.e., synapses, axon) and computation (i.e., refractory
delays, dendritic tree processing) were further qualified to be
adaptably configured, in combination with chip’s online learn-
ing abilities, which support diverse application scenarios includ-
ing autonomous driving, prosthesis control, and the Internet-of-
Things.

Beyond abovementioned implementations for reconfigurable
neuromorphic computing, reconfigurable heterogeneous com-
puting integrates originally incompatible computing paradigms
with different coding schemes, functions, or computing archi-
tectures into a synergistic parallel-computing hardware platform.
Cooperating with brain-inspired computing, reconfigurable het-
erogeneous computing highlights a state-of-art optimising so-
lution for hashrate bottleneck and generalized neuromorphic
hardware.[14,36,85,86,90,301–304] To actualize the neuromorphic recon-
figurable heterogeneous computation, cross-modality ANN/SNN
designs[14,36,90] and heterogeneous integration technology[85,86,301]

as the two mainstreams from distinct aspects have shown the sig-
nificant prospects which will be introduced in Subsection 7.2.

Achieving reconfigurable coordination of both ANNs and
SNNs in a unified platform is an emerging heterogeneous
fusion technology to solve complex dynamic problems with
imperfect or uncertain data, enabling concurrent execution
of diverse real-world tasks. With the substantial synergy of
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Figure 11. Reconfigurable neuromorphic computing at the integration level. a) Data flow of CORDIC-based reconfigurable SNN accelerator with TDM
strategy. Reproduced with permission.[97] Copyright 2021, IEEE. b) The TrueNorth multichip architecture with reconfigurable point-to-point schemes.
Reproduced with permission.[13] Copyright 2014, The American Association for the Advancement of Science. c,d) Tianji chip: c) the diagram of cross-
paradigm neuron system with hybrid ANN and SNN segments, d) illustration of unmanned bicycle application. Reproduced with permission.[14] Copy-
right 2019, Springer Nature.

reconfigurability from device and chip level, Pei et al. have
demonstrated Tianjic chip, a cross-model neuromorphic scheme
with hybrid ANNs/SNNs, featuring a many-core architecture,
reconfigurable building blocks and a streamlined dataflow.[14]

At the device level, spike representation of binary sequences
was selected to realize a compatible coding paradigm between
ANNs and SNNs. This versatile system employed unified func-
tional cores (FCore) for deep imitation of biological components,

where axon, soma, and routing look-up tables can be reallo-
cated into multiple modalities to support on-demand connection
(Figure 11c). This device-level reconfigurability enables the FCore
to consequently execute reconfigurability by means of flexibly
assembling diverse functional primitives (axon, soma, routing
look-up table, and so on). Furthermore, the Tianjic chip, support-
ing both ANN-based precise computing and SNN-based neuro-
morphic approximation, has been demonstrated to implement
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driverless bicycle task with real-time object tracking, speech and
balance control, as well as obstacle avoidance by operating the
CNN, CANN, SNN, and MLP networks concurrently in a seam-
less communication manner (Figure 11d). More recently, Kuang
et al. created a larger-scale hybrid-modal chip presenting recon-
figurable 64 million synapses and 64,000 neurons with outstand-
ing capacity, throughput, and efficiency.[90] Based on the LIF neu-
ron model, this scheme featured an advanced multiplierless dig-
ital neuron system aiming at the area- and energy-efficient in-
tegration of both biomimetic SNNs and event-triggered ANNs.
Reconfigurability of this scheme mainly derives from the point-
to-point routing protocol and pipeline structure with the view of
realizing various network topologies. Benefiting from the ultra-
compatibility of point-to-point schemes for both inter- and intra-
chip communication, the reprogrammable interconnection be-
tween arbitrary neurons and adaptive control of single neuromor-
phic elements was guaranteed, which contributes to reconfig-
urable neuromorphic computing. Compared to above-mentioned
chip, this scheme actualized highly integrated neuromorphic
chip, while its limited event-based properties of ANNs and short-
age of sufficient practical application proofs expect further inves-
tigations on cross-paradigm reconfigurable neuromorphic chips.

7.2. Neuromorphic Integration Implemented with ReRAM-Based
Devices

In addition to the abovementioned CMOS-based designs of
neuromorphic computing systems, the development of neuro-
morphic electronics such as ReRAM provide a promising in-
sight into resolution of memory wall challenge and implemen-
tations of area- and energy-efficient bioinspired computing plat-
forms. Although many recent investigations have shown fully
integrated ReRAM neuromorphic chips are capable of repro-
grammable multiply-accumulated operations for AI edge com-
putation and other neuromorphic applications,[305–308] it remains
challengeable to simultaneously deliver efficiency and versatil-
ity to achieve various neural networks and software-comparable
accuracy. And the existing ReRAM schemes still suffer from
stochasticity, poor endurance, limited intra-block communica-
tion and hardware overhead (e.g., peripheral control circuitry and
analogue-to-digital converters), impeding the sufficient utiliza-
tion of ReRAM’s high efficiency and density.[99,309,310]

Pioneering works on building neuromorphic hardware plat-
form with ReRAM to solve abovementioned issues have been
achieved. In 2019, a full-chip stack solution of ReRAM-based
process-in-memory neural network accelerator—a reconfig-
urable architecture has been created by Ji et al.,[15] which con-
tains field programmable synapse array (FPSA) and the corre-
sponding software hierarchy where this hierarchy reconfigures
the hardware resource provided by FPSA. FPSA contains spik-
ing memory blocks and configurable logic blocks which are in-
terconnected through a reconfigurable routing architecture, con-
tributing to overcome exiting communication bottleneck. Con-
trary to abovementioned SpiNNaker based on ASICs, FPSA is a
non-ASIC scheme and first adopts the ReRAM-based reconfig-
urable routing architecture for analog circuits, which augments
the achievable computing, buffering, controlling, and wiring re-
sources for software. FPSA’ performance was qualified to outper-

form the state-of-art cutting-edge NN accelerators by up to 1000×
speedup.

NeuRRAM—a ReRAM-relied compute-in-memory chip with
a hardware-algorithm co-optimization technology, has been pre-
sented by Wan et al.,[33] which integrates power efficiency,
flexibility of various neuromorphic architectures and software-
comparable inference accuracy into one RRAM chip. The ana-
logue programmability of 3 million RRAMs offers the on-
demand processing granularity at the device level and tune-
able computation bit-precision at the system level. From the
chip-architecture standpoint, a transposable neurosynaptic ar-
ray achieves reconfigurable dataflow dynamics which is feasible
for implementing maximized model architectures with change-
able dataflow directions in a cost-efficient and non-trade-off man-
ner (Figure 12a,b). Notably, this NeuRRAM chip composes of
48 compute-in-memory cores those support reprogrammable
weight-mapping strategies and a wide range of I/O dynamics at
the system level. Compared with the state-of-art RRAM chips,
NeuRRAM exhibits doubled energy efficiency and possesses ex-
cellent accuracy which is comparable to software simulations.

Beyond cross-paradigm combination of different neural net-
works introduced in Subsection 7.1, another important approach
for reconfigurable heterogeneous neuromorphic computing is
3D heterogeneous integration technology which features high-
density interactive interfaces with preferable bandwidth and ul-
tralow latency, while conventional heterogeneous integration is
burdened with fixed hardwire connection calling for further im-
provements. Based on extraordinary inter-chip stackability of 3D
heterogeneous integration technology, Choi et al. demonstrated
a non-von Neumann reconfigurable chips consisting of optoelec-
tronic device arrays and memristive crossbars.[85] The former em-
bedded in freestanding chips is made up of optoelectronic pho-
todiodes and light-emitting diodes (Figure 12c), executing inter-
chip optic communication without hardwire bonding and print-
ing, which endows the hardware with a huge space of freedom for
reconfigurability. The memristor crossbars are implanted as neu-
romorphic functional cores (Figure 12d) in each chip layer, im-
plementing intra-chip parallel data processing, which contributes
to enhancing processing duration and data bandwidth. To qual-
ify the faithful reconfigurability, hetero-integrated modules con-
sisting of optical sensor layers and multimodal processors were
managed, and a corrupted letter recognition task was executed
by intercalating a denoising chip into a stackable hetero-chip ar-
chitecture. Benefiting from hardwire-free light interconnection,
cross-modality data processing is achievable by reconfiguring
and customizing functional layers on-demand, and efficient par-
allel computing of diverse processors by flexibly staking has also
been successfully demonstrated. Notably, while the intra-layer re-
configurability remains absent in this work, the multi-granularity
computation could be achieved by this modular scheme though
elaborately reconfiguring the stacking orders.

8. Outlook

Reconfigurable neuromorphic computing is one of the main-
stream trends for artificial intelligence to realize the general-
purposed multifunctional hardware. It integrates multiple
primitives into simple devices, which only require simple mod-
ulations to execute cross-modality switching for ever-changing
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Figure 12. Reconfigurable neuromorphic computing at the integration level. a,b) Reconfigurable structure of NeuRRAM chip: micrograph of one
computing-in-memory core on NeuRRAM chip (a), reconfigurable data-flow direction where the transposable neurosynaptic array can be reversibly
configured in recurrent, forward or backward directions (b). Reproduced under terms of the CC-BY license.[33] Copyright 2022, The Authors, published
by Springer Nature. c,d) Optoelectronic device stack (c) and neuromorphic computing core (d) of reconfigurable hetero-integrated chips. Reproduced
with permission.[85] Copyright 2022, Springer Nature.

circumstances. Redundant hardware consumptions are sub-
stantially reduced, thereby relieving the pressure on hardwire
connection and data transfer. Therefore, reconfigurable neu-
romorphic computing facilitates high versatility, integration,
energy efficiency, as well as unprecedented resource reuse.

Reconfigurable capability can be comprehended from three
aspects. First, reconfigurable device features manoeuvrability
which can be dynamically customized to cater for different ap-
pointments. These kinds of devices aim to manage various re-
liable computing primitives to enhance the degree of integra-
tion and miniaturization in an all-in-one manner, consequently
integrating originally separate terminal applications. Therefore,
customer-oriented versatility is one of the core targets for re-
configurable technology. Second, achieving the virtually infinite
reutilization of hardware resources at a restricted timescale is
of critical concern for reconfigurable hardware schemes. Recon-
figurable neuromorphic hardware platforms can be viewed as
an aggregation of reprogrammable components, subsequently

bringing about efficient temporal reuse, hardware simplification,
and scalability. Last but not least, noninvasive and reproducible
switch between different patterns should be highlighted, moti-
vating a more intensive research interests and widespread com-
mercial implementations of brain-inspired devices.

The development of reconfigurable neuromorphic computing
is still in its fancy. Although prior studies have devoted great
efforts at the material and device level, the critical parameters
such as robustness, cycling endurance, variability, and intrinsic
stochasticity still urge for further improvements. First, the un-
reliable driving mechanisms (e.g., magnetic soliton’s dynamics,
charge trapping, ferroelectric polarization, and so on) might
accumulate the irreversible structure change which degrade the
reproducibility. Second, a great sense of research is restricted
to synaptic devices and only realize the collection of different
plastic response which present poor application-level implemen-
tations. Additionally, reconfigurable neuromorphic devices also
face unignorable cycle-to-cycle variability and device-to-device
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nonuniformity, which hinder the development of reconfigurabil-
ity, and more research on the materials and device architecture
should be conducted. Multi-paradigm switching of neuronic and
synaptic functions in a single device seems to be a successful
case,[310] but the existent studies are unable to mimic the rela-
tively comprehensive biologic characteristics of neither synapses
nor neurons. Although reconfigurable hardware implementa-
tion of neuromorphic computing is a hot-button issue appealing
to researchers, successfully integrated computing primitives or
achievable functional paradigms are still limited, which calls for
further investigations.

In our review, state-of-art progresses from different hierar-
chies has been highlighted. For reconfigurable neuromorphic
computing at the material and device level, we have reviewed
the comprehensive mechanisms including ion dynamics, car-
rier migration, phase transition, spintronics, and photonics. De-
pending on these modulating mechanisms, various brain-like
functions can be integrated at the unit-cell level, which requires
elaborate material engineering and device configurations. We in-
troduce the representative achievements in enhancing the re-
configurability of neuromorphic electronics, for example, multi-
plasticity for synaptic devices, hybrid neural and synaptic func-
tions, reconfigurable Boolean logic functions for efficient neu-
ral networks and general-purposed neural network accelerators.
Particularly, the reconfigurable filament dynamics driven by elec-
trochemical metallization or valance change endow the neuro-
morphic devices abundant freedoms to choose between volatile
TS mode and nonvolatile RS mode by simply changing exter-
nal optical or electric input, which originally requires a more
complex circuit configuration. Compact integrated Boolean logic
functions for neural networks have been successfully reported
with reconfigurable neuromorphic devices. For instance, by uti-
lizing spintronic mechanisms such as magnetic texture, spin-
orbit torque, artificial spin ice, and so on, a complete set of
in-memory logics can be achieved and subsequently used for
more efficient neural algorithms surpassing the conventional
CMOS.

For reconfigurable neuromorphic computing at the integra-
tion level, the improvement of inherent programmability is
considered from two main technologies, namely, CMOS- and
ReRAM-based routines. Specifically, the reconfigurable hetero-
geneous integration technology employs the flexible optical in-
terlayer connection cooperating with stackable chip layers rather
than traditional complex hardwire strategy and unalterable chip
design, significantly enhancing the freedom degree of hierar-
chical and multidomain network topologies. Benefiting from
closely mimicking the cerebral cortex, SNN-oriented integra-
tion schemes provide an event-based working mechanism and
intrinsic fault-tolerant granularity, which bring about rich spa-
tiotemporal dynamics, area and energy efficiency, and anti-
interference properties. ANN-oriented approaches feature data-
intensive computing and exact equivalence, leading to higher en-
ergy consumption and resource requirements. It should be noted
that, although SNNs possess more brain-like characteristics, the
ANN-based strategies provide better technological maturity, pop-
ularization, and compatibility with silicon-based CMOS technol-
ogy. Therefore, exploring which is the most appropriate fashion
and balancing the advantages and drawbacks between these two
paradigms, are of crucial importance for researchers to concern.

Reconfigurability in neuromorphic hardware promise to be
game-changing for deeper artificial intelligence in the post-
Moore era. The future challenging obstacles and opportunities
can be foreseen as follows:

i. More powerful functional integration: Abundant functional
modules are critical for reconfigurable neuromorphic devices
to tackle real-world scenarios. Although a variety of imple-
mentations are being explored for reconfigurable neuromor-
phic computing, the number of current achievable functions
is restricted, and more comprehensive synthesis of brain-
inspired components remain exclusive.

ii. Robust switch: Pursuing highly reproducible and stable
switches are fundamental in reconfigurable neuromorphic
devices. However, the limited endurance and retention per-
formances, as well as huge cycling capability difference be-
tween different paradigms severely hamper the improve-
ment of overall switching robustness.

iii. Self-adaptive capability: Grow-when-required neuromorphic
hardware platforms, featuring self-adaptive capability, are
of essential importance for next-generation artificial intelli-
gence to perform on-demand practical tasks in ever-changing
circumstances.

Ultimately, the multidisciplinary efforts spanning mecha-
nisms, materials, devices, and integrations are necessary to expe-
dite the prosperity of reconfigurable neuromorphic computing.
A wide variety of practical applications of reconfigurable neuro-
morphic devices can be anticipated which present enormous po-
tential to dominate the next wave of AI revolution.
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[56] A. Pantazi, S. Woźniak, T. Tuma, E. Eleftheriou, Nanotechnology
2016, 27, 355205.

[57] S. Kumar, R. S. Williams, Z. Wang, Nature 2020, 585, 518.
[58] Y. Fu, Y. Zhou, X. Huang, B. Dong, F. Zhuge, Y. Li, Y. He, Y. Chai, X.

Miao, Adv. Funct. Mater. 2022, 32, 2111996.
[59] U. S. Goteti, I. A. Zaluzhnyy, S. Ramanathan, R. C. Dynes, A. Frano,

Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2103934118.
[60] U. S. Goteti, R. C. Dynes, J. Appl. Phys. 2021, 129, 073901.
[61] U. S. Goteti, H. Cai, J. C. LeFebvre, S. A. Cybart, R. C. Dynes, Sci. Adv.

2022, 8, abn4485.
[62] M. L. Schneider, C. A. Donnelly, S. E. Russek, B. Baek, M. R. Pufall,

P. F. Hopkins, P. D. Dresselhaus, S. P. Benz, W. H. Rippard, Sci. Adv.
2018, 4, 1701329.

[63] S. A. Siddiqui, S. Dutta, A. Tang, L. Liu, C. A. Ross, M. A. Baldo, Nano
Lett. 2020, 20, 1033.

[64] Z. Luo, A. Hrabec, T. P. Dao, G. Sala, S. Finizio, J. Feng, S. Mayr, J.
Raabe, P. Gambardella, L. J. Heyderman, Nature 2020, 579, 214.

[65] J. C. Gartside, K. D. Stenning, A. Vanstone, H. H. Holder, D. M.
Arroo, T. Dion, F. Caravelli, H. Kurebayashi, W. R. Branford, Nat.
Nanotechnol. 2022, 17, 460.

[66] D. M. Arroo, J. C. Gartside, W. R. Branford, Phys. Rev. B 2019, 100,
214425.

[67] J. C. Gartside, A. Vanstone, T. Dion, K. D. Stenning, D. M. Arroo, H.
Kurebayashi, W. R. Branford, Nat. Commun. 2021, 12, 2488.

[68] K. D. Stenning, J. C. Gartside, T. Dion, A. Vanstone, D. M. Arroo, W.
R. Branford, ACS Nano 2021, 15, 674.

[69] B. C. Jang, S. Kim, S. Y. Yang, J. Park, J.-H. Cha, J. Oh, J. Choi, S. G.
Im, V. P. Dravid, S.-Y. Choi, Nano Lett. 2019, 19, 839.

[70] R. Yu, Y. Yan, E. Li, X. Wu, X. Zhang, J. Chen, Y. Hu, H. Chen, T. Guo,
Mater. Horiz. 2021, 8, 2797.

[71] Y. Li, Q. Qian, X. Zhu, Y. Li, M. Zhang, J. Li, C. Ma, H. Li, J. Lu, Q.
Zhang, InfoMat 2020, 2, 995.

[72] G. Milano, M. Luebben, Z. Ma, R. Dunin-Borkowski, L. Boarino, C.
F. Pirri, R. Waser, C. Ricciardi, I. Valov, Nat. Commun. 2018, 9, 5151.

[73] J. Wang, Z. Lv, X. Xing, X. Li, Y. Wang, M. Chen, G. Pang, F. Qian, Y.
Zhou, S. Han, Adv. Funct. Mater. 2020, 30, 1909114.

[74] M. T. Sharbati, Y. Du, J. Torres, N. D. Ardolino, M. Yun, F. Xiong, Adv.
Mater. 2018, 30, 1802353.

[75] S. A. Cybart, E. Y. Cho, T. J. Wong, B. H. Wehlin, M. K. Ma, C. Huynh,
R. C. Dynes, Nat. Nanotechnol. 2015, 10, 598.

[76] J. M. Shainline, S. M. Buckley, R. P. Mirin, S. W. Nam, Phys. Rev. Appl.
2017, 7, 034013.

[77] E. Toomey, M. Onen, M. Colangelo, B. A. Butters, A. N. McCaughan,
K. K. Berggren, Phys. Rev. Appl. 2019, 11, 034006.

[78] J. Tang, F. Yuan, X. Shen, Z. Wang, M. Rao, Y. He, Y. Sun, X. Li, W.
Zhang, Y. Li, B. Gao, H. Qian, G. Bi, S. Song, J. J. Yang, H. Wu, Adv.
Mater. 2019, 31, 1902761.

[79] J. Yang, R. Wang, Y. Ren, J. Mao, Z. Wang, Y. Zhou, S. Han, Adv.
Mater. 2020, 32, 2003610.

[80] S. Wang, C. Y. Wang, P. Wang, C. Wang, Z. A. Li, C. Pan, Y. Dai, A.
Gao, C. Liu, J. Liu, H. Yang, X. Liu, B. Cheng, K. Chen, Z. Wang, K.
Watanabe, T. Taniguchi, S. J. Liang, F. Miao, Natl. Sci. Rev. 2021, 8,
10.

[81] T. Wang, H.-M. Huang, X.-X. Wang, X. Guo, InfoMat 2021, 3, 804.
[82] Z. Zhang, Z. Wang, T. Shi, C. Bi, F. Rao, Y. Cai, Q. Liu, H. Wu, P. Zhou,

InfoMat 2020, 2, 261.
[83] M. D. Greicius, B. Krasnow, A. L. Reiss, V. Menon, Proc. Natl. Acad.

Sci. U. S. A. 2003, 100, 253.
[84] S. Dehaene, E. Spelke, P. Pinel, R. Stanescu, S. Tsivkin, Science 1999,

284, 970.
[85] C. Choi, H. J. Kim, J. H. Kang, M. K. Song, H. Yeon, C. S. Chang, J.

M. Suh, J. Shin, K. Lu, B. I. Park, Y. Kim, H. E. Lee, D. Lee, J. Lee, I.
Jang, S. Pang, K. Ryu, S. H. Bae, Y. F. Nie, H. S. Kum, M. C. Park, S.
Lee, H. J. Kim, H. Q. Wu, P. Lin, J. Kim, Nat. Electron. 2022, 5, 386.

[86] S.-J. Liang, F. Miao, Nat. Electron. 2022, 5, 327.
[87] Y. H. Chen, T. Krishna, J. S. Emer, V. Sze, IEEE J. Solid-State Circuits

2017, 52, 127.
[88] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C.

Patterson, D. R. Lester, A. D. Brown, S. B. Furber, IEEE J. Solid-State
Circuits 2013, 48, 1943.

[89] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R.
Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan,
Y.-H. Weng, A. Wild, Y. Yang, H. Wang, IEEE Micro 2018, 38, 82.

[90] Y. Kuang, X. Cui, Y. Zhong, K. Liu, C. Zou, Z. Dai, Y. Wang, D. Yu, R.
Huang, IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2655.

[91] G. M. Marega, Y. F. Zhao, A. Avsar, Z. Y. Wang, M. Tripathi, A.
Radenovic, A. Kis, Nature 2020, 587, 72.

[92] D. V. Christensen, R. Dittmann, B. Linares-Barranco, A. Sebastian,
M. Le Gallo, A. Redaelli, S. Slesazeck, T. Mikolajick, S. Spiga, S.
Menzel, I. Valov, G. Milano, C. Ricciardi, S.-J. Liang, F. Miao, M.
Lanza, T. J. Quill, S. T. Keene, A. Salleo, J. Grollier, D. Markovíc,
A. Mizrahi, P. Yao, J. J. Yang, G. Indiveri, J. P. Strachan, S. Datta,
E. Vianello, A. Valentian, J. Feldmann, et al., Neuromorphic Comput.
Eng. 2022, 2, 022501.

[93] L. Tong, Z. Peng, R. Lin, Z. Li, Y. Wang, X. Huang, K.-H. Xue, H. Xu,
F. Liu, H. Xia, P. Wang, M. Xu, W. Xiong, W. Hu, J. Xu, X. Zhang, L.
Ye, X. Miao, Science 2021, 373, 1353.

[94] W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A.
Coldren, J. Yao, Nat. Photonics 2016, 10, 190.

[95] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D.
Sumislawska, G. Indiveri, Front. Neurosci. 2015, 9, 00141.

[96] S. Yang, J. Wang, N. Zhang, B. Deng, Y. Pang, M. R. Azghadi, IEEE
Trans. Neural Networks Learn. Syst. 2021, 33, 7126.

[97] J. Wu, Y. Zhan, Z. Peng, X. Ji, G. Yu, R. Zhao, C. Wang, IEEE Trans.
Circuits Syst. Regular Papers 2021, 68, 2522.

[98] D. S. Jeong, C. S. Hwang, Adv. Mater. 2018, 30, 1704729.
[99] Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan,

S. Asapu, Y. Zhuo, H. Jiang, P. Lin, C. Li, J. H. Yoon, N. K. Upadhyay,
J. Zhang, M. Hu, J. P. Strachan, M. Barnell, Q. Wu, H. Wu, R. S.
Williams, Q. Xia, J. J. Yang, Nat. Electron. 2018, 1, 137.

[100] W. Huh, D. Lee, C. H. Lee, Adv. Mater. 2020, 32, 2002092.
[101] S. J. Kim, S. Kim, H. W. Jang, iScience 2021, 24, 101889.
[102] F. Zhou, Z. Zhou, J. Chen, T. H. Choy, J. Wang, N. Zhang, Z. Lin, S.

Yu, J. Kang, H. S. P. Wong, Y. Chai, Nat. Nanotechnol. 2019, 14, 776.
[103] H. Park, H. Kim, D. Lim, H. Zhou, Y. Kim, Y. Lee, S. Park, T. Lee, Adv.

Mater. 2020, 32, 1906899.
[104] T. Ahmed, M. Tahir, M. X. Low, Y. Ren, S. A. Tawfik, E. L. H. Mayes,

S. Kuriakose, S. Nawaz, M. J. S. Spencer, H. Chen, M. Bhaskaran, S.
Sriram, S. Walia, Adv. Mater. 2021, 33, 2004207.

[105] S. J. Kim, T. H. Lee, J.-M. Yang, J. W. Yang, Y. J. Lee, M.-J. Choi, S. A.
Lee, J. M. Suh, K. J. Kwak, J. H. Baek, I. H. Im, D. E. Lee, J. Y. Kim,
J. Kim, J. S. Han, S. Y. Kim, D. Lee, N.-G. Park, H. W. Jang, Mater.
Today 2022, 52, 19.

[106] K. J. Kwak, D. E. Lee, S. J. Kim, H. W. Jang, J. Phys. Chem. Lett. 2021,
12, 8999.

[107] R. Aviv, T. Aviv, Adv. Funct. Mater. 2020, 30, 2005718.
[108] R. Xu, H. Jang, M. H. Lee, D. Amanov, Y. Cho, H. Kim, S. Park, H. J.

Shin, D. Ham, Nano Lett. 2019, 19, 2411.
[109] L. Bao, J. Zhu, Z. Yu, R. Jia, Q. Cai, Z. Wang, L. Xu, Y. Wu, Y. Yang, Y.

Cai, R. Huang, ACS Appl. Mater. Interfaces 2019, 11, 41482.
[110] R. A. John, Y. Demirağ, Y. Shynkarenko, Y. Berezovska, N.

Ohannessian, M. Payvand, P. Zeng, M. I. Bodnarchuk, F. Krumeich,
G. Kara, I. Shorubalko, M. V. Nair, G. A. Cooke, T. Lippert, G. Indiveri,
M. V. Kovalenko, Nat. Commun. 2022, 13, 2074.

[111] X. Zhao, H. Xu, Z. Wang, Y. Lin, Y. Liu, InfoMat 2019, 1, 407.
[112] L. Li, W. Han, L. Pi, P. Niu, J. Han, C. Wang, B. Su, H. Li, J. Xiong, Y.

Bando, T. Zhai, InfoMat 2019, 1, 54.

Adv. Mater. 2023, 35, 2301063 © 2023 Wiley-VCH GmbH2301063 (34 of 39)

 15214095, 2023, 51, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202301063 by U
niversity O

f E
lectronic, W

iley O
nline L

ibrary on [01/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fadma.202301063&mode=


www.advancedsciencenews.com www.advmat.de

[113] M. Song, S. Lee, S. S. T. Nibhanupudi, J. V. Singh, M. Disiena, C. J.
Luth, S. Wu, M. J. Coupin, J. H. Warner, S. K. Banerjee, Nano Lett.
2023, 23, 2952.

[114] H. Li, X. Huang, J. Yuan, Y. Lu, T. Wan, Y. Li, K. Xue, Y. He, M. Xu, H.
Tong, X. Miao, Adv. Electron. Mater. 2020, 6, 2000309.

[115] L. Zhou, J. Y. Mao, Y. Ren, J. Q. Yang, S. R. Zhang, Y. Zhou, Q. Liao,
Y. J. Zeng, H. Shan, Z. Xu, J. Fu, Y. Wang, X. Chen, Z. Lv, S. T. Han,
V. A. L. Roy, Small 2018, 14, 1800288.

[116] H. W. Chen, X. Y. Xue, C. S. Liu, J. B. Fang, Z. Wang, J. L. Wang, D.
W. Zhang, W. D. Hu, P. Zhou, Nat. Electron. 2021, 4, 399.

[117] D. Fan, S. Angizi, presented at Proc. 35th IEEE Int. Conf. Comput.
Des. ICCD 2017 2017, https://doi.org/10.1109/ICCD.2017.107.

[118] T.-Y. Wang, J.-L. Meng, Q.-X. Li, Z.-Y. He, H. Zhu, L. Ji, Q.-Q. Sun, L.
Chen, D. W. Zhang, Nano Energy 2021, 89, 106291.

[119] W. Fei, J. Trommer, M. C. Lemme, T. Mikolajick, A. Heinzig, InfoMat
2022, 4, e12355.

[120] J.-Y. Chen, C.-L. Hsin, C.-W. Huang, C.-H. Chiu, Y.-T. Huang, S.-J. Lin,
W.-W. Wu, L.-J. Chen, Nano Lett. 2013, 13, 3671.

[121] R. Waser, J. Nanosci. Nanotechnol. 2012, 12, 7628.
[122] S. M. Hus, R. Ge, P. A. Chen, L. Liang, G. E. Donnelly, W. Ko, F.

Huang, M. H. Chiang, A. P. Li, D. Akinwande, Nat. Nanotechnol.
2021, 16, 58.

[123] Q. Xia, J. J. Yang, Nat. Mater. 2019, 18, 309.
[124] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, H.

Qian, Nature 2020, 577, 641.
[125] S. G. Hu, Y. Liu, Z. Liu, T. P. Chen, J. J. Wang, Q. Yu, L. J. Deng, Y.

Yin, S. Hosaka, Nat. Commun. 2015, 6, 7522.
[126] C. Teng, Q. Yu, Y. Sun, B. Ding, W. Chen, Z. Zhang, B. Liu, H.-M.

Cheng, InfoMat 2022, 5, e12351.
[127] S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P.-Y. Chen, H. Yeon, S. Yu,

J. Kim, Nat. Mater. 2018, 17, 335.
[128] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila,

H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, J. P. Strachan, Adv. Mater.
2018, 30, 1705914.

[129] Y. Li, E. J. Fuller, J. D. Sugar, S. Yoo, D. S. Ashby, C. H. Bennett, R.
D. Horton, M. S. Bartsch, M. J. Marinella, W. D. Lu, A. A. Talin, Adv.
Mater. 2020, 32, 2003984.

[130] M. Kumar, J. Lim, H. Seo, Nano Energy 2021, 89, 106471.
[131] J. Shi, Y. Zhou, S. Ramanathan, Nat. Commun. 2014, 5, 4860.
[132] C. S. Yang, D. S. Shang, N. Liu, G. Shi, X. Shen, R. C. Yu, Y. Q. Li, Y.

Sun, Adv. Mater. 2017, 29, 1700906.
[133] S. Wang, C. Chen, Z. Yu, Y. He, X. Chen, Q. Wan, Y. Shi, D. W. Zhang,

H. Zhou, X. Wang, P. Zhou, Adv. Mater. 2019, 31, 1806227.
[134] J. Shi, S. D. Ha, Y. Zhou, F. Schoofs, S. Ramanathan, Nat. Commun.

2013, 4, 2676.
[135] J. Wang, S. Xu, C. Zhang, A. Yin, M. Sun, H. Yang, C. Hu, H. Liu,

InfoMat. 2022, 5, e12376.
[136] V. K. Sangwan, H. S. Lee, H. Bergeron, I. Balla, M. E. Beck, K. S.

Chen, M. C. Hersam, Nature 2018, 554, 500.
[137] J. T. Yuan, S. E. Liu, A. Shylendra, W. A. G. Rojas, S. L. Guo, H.

Bergeron, S. W. Li, H. S. Lee, S. Nasrin, V. K. Sangwan, A. R. Trivedi,
M. C. Hersam, Nano Lett. 2021, 21, 6432.

[138] G. W. Burr, R. M. Shelby, S. Sidler, C. di Nolfo, J. Jang, I. Boybat, R.
S. Shenoy, P. Narayanan, K. Virwani, E. U. Giacometti, B. N. Kuerdi,
H. Hwang, IEEE Trans. Electron Devices 2015, 62, 3498.

[139] J. Woo, S. Yu, IEEE Nanotechnol. Mag. 2018, 12, 36.
[140] Y. Wang, Y. Zheng, J. Gao, T. Jin, E. Li, X. Lian, X. Pan, C. Han, H.

Chen, W. Chen, InfoMat 2021, 3, 917.
[141] Y. Yao, X. Huang, S. Peng, D. Zhang, J. Shi, G. Yu, Q. Liu, Z. Jin, Adv.

Electron. Mater. 2019, 5, 1800887.
[142] C. H. Huang, Y. Zhang, K. Nomura, ACS Appl. Mater. Interfaces 2021,

14, 22252.
[143] H. Tian, W. Mi, X. F. Wang, H. Zhao, Q. Y. Xie, C. Li, Y. X. Li, Y. Yang,

T. L. Ren, Nano Lett. 2015, 15, 8013.

[144] H. Tian, X. Cao, Y. Xie, X. Yan, A. Kostelec, D. DiMarzio, C. Chang,
L.-D. Zhao, W. Wu, J. Tice, J. J. Cha, J. Guo, H. Wang, ACS Nano 2017,
11, 7156.

[145] G. L. Ding, B. D. Yang, R. S. Chen, W. A. Mo, K. Zhou, Y. Liu, G.
Shang, Y. B. Zhai, S. T. Han, Y. Zhou, Small 2021, 17, 2103175.

[146] P. Wu, T. He, H. Zhu, Y. Wang, Q. Li, Z. Wang, X. Fu, F. Wang, P.
Wang, C. Shan, Z. Fan, L. Liao, P. Zhou, W. Hu, InfoMat 2022, 4,
e12275.

[147] L. Tong, Z. R. Peng, R. F. Lin, Z. Li, Y. L. Wang, X. Y. Huang, K.
H. Xue, H. Y. Xu, F. Liu, H. Xia, P. Wang, M. S. Xu, W. Xiong, W.
D. Hu, J. B. Xu, X. L. Zhang, L. Ye, X. S. Miao, Science 2021, 373,
1353.

[148] D. Li, M. Chen, Z. Sun, P. Yu, Z. Liu, P. M. Ajayan, Z. Zhang, Nat.
Nanotechnol. 2017, 12, 901.

[149] L. Lv, F. Zhuge, F. Xie, X. Xiong, Q. Zhang, N. Zhang, Y. Huang, T.
Zhai, Nat. Commun. 2019, 10, 3331.

[150] F. Chen, Q. Tang, T. Ma, B. Zhu, L. Wang, C. He, X. Luo, S. Cao, L.
Ma, C. Cheng, InfoMat 2022, 4, e12299.

[151] X. Xiong, J. Y. Kang, Q. L. Hu, C. R. Gu, T. T. Gao, X. F. Li, Y. Q. Wu,
Adv. Funct. Mater. 2020, 30, 1909645.

[152] N. Duan, Y. Li, H.-C. Chiang, J. Chen, W.-Q. Pan, Y.-X. Zhou, Y.-C.
Chien, Y.-H. He, K.-H. Xue, G. Liu, T.-C. Chang, X.-S. Miao, Nanoscale
2019, 11, 17590.

[153] B. Pradhan, S. Das, J. Li, F. Chowdhury, J. Cherusseri, D. Pandey, D.
Dev, A. Krishnaprasad, E. Barrios, A. Towers, A. Gesquiere, L. Tetard,
T. Roy, J. Thomas, Sci. Adv. 2020, 6, eaay5225.

[154] Y. Sun, M. Li, Y. Ding, H. Wang, H. Wang, Z. Chen, D. Xie, InfoMat
2022, 4, e12317.

[155] D. Sarkar, J. Tao, W. Wang, Q. Lin, M. Yeung, C. Ren, R. Kapadia,
ACS Nano 2018, 12, 1656.

[156] J. Zhu, Y. Yang, R. Jia, Z. Liang, W. Zhu, Z. U. Rehman, L. Bao, X.
Zhang, Y. Cai, L. Song, R. Huang, Adv. Mater. 2018, 30, 1800195.

[157] Y. Yang, Y. He, S. Nie, Y. Shi, Q. Wan, IEEE Electron Device Lett. 2018,
39, 897.

[158] Y. Yang, J. Wen, L. Guo, X. Wan, P. Du, P. Feng, Y. Shi, Q. Wan, ACS
Appl. Mater. Interfaces 2016, 8, 30281.

[159] Q. Yang, Z. Luo, D. Zhang, M. Zhang, X. Gan, J. Seidel, Y. Liu, Y.
Hao, G. Han, Adv. Funct. Mater. 2022, 32, 202207290.

[160] H. Li, X. Jiang, W. Ye, H. Zhang, L. Zhou, F. Zhang, D. She, Y. Zhou,
S.-T. Han, Nano Energy 2019, 65, 104000.

[161] S. Ge, F. Huang, J. He, Z. Xu, Z. Sun, X. Han, C. Wang, L. Huang, C.
Pan, Adv. Opt. Mater. 2022, 10, 2200409.

[162] Y. Lian, J. Han, M. Yang, S. Peng, C. Zhang, C. Han, X. Zhang, X. Liu,
H. Zhou, Y. Wang, C. Lan, J. Gou, Y. Jiang, Y. Liao, H. Yu, J. Wang,
Adv. Funct. Mater. 2022, 32, 2205709.

[163] T. Ahmed, S. Kuriakose, S. Abbas, M. J. S. Spencer, M. A. Rahman,
M. Tahir, Y. Lu, P. Sonar, V. Bansal, M. Bhaskaran, S. Sriram, S. Walia,
Adv. Funct. Mater. 2019, 29, 1901991.

[164] T. Ahmed, S. Kuriakose, E. L. H. Mayes, R. Ramanathan, V. Bansal,
M. Bhaskaran, S. Sriram, S. Walia, Small 2019, 15, 1900966.

[165] C. Yang, T. Chen, D. Verma, L. Li, B. Liu, W. Chang, C. Lai, Adv. Funct.
Mater. 2020, 30, 2001598.

[166] Y.-X. Hou, Y. Li, Z.-C. Zhang, J.-Q. Li, D.-H. Qi, X.-D. Chen, J.-J. Wang,
B.-W. Yao, M.-X. Yu, T.-B. Lu, J. Zhang, ACS Nano 2021, 15, 1497.

[167] L. Mennel, J. Symonowicz, S. Wachter, D. K. Polyushkin, A. J. Molina-
Mendoza, T. Mueller, Nature 2020, 579, 62.

[168] D. Xie, K. Yin, Z.-J. Yang, H. Huang, X. Li, Z. Shu, H. Duan, J. He, J.
Jiang, Mater. Horiz. 2022, 9, 1448.

[169] C. Y. C. Y. C. Y. Wang, S. J. Liang, S. Wang, P. F. Wang, Z. Li, Z. L. Z.
R. Z. Wang, A. Y. Gao, C. Pan, C. Liu, J. Liu, H. F. Yang, X. W. Liu, W.
H. Song, C. Y. C. Y. C. Y. Wang, X. M. Wang, K. J. Chen, Z. L. Z. R.
Z. Wang, K. Watanabe, T. Taniguchi, J. J. Yang, F. Miao, B. Cheng, L.
Zhu’an, Z. L. Z. R. Z. Wang, A. Y. Gao, C. Pan, C. Liu, J. Liu, H. F.
Yang, X. W. Liu, et al., Sci. Adv. 2020, 6, 1.

Adv. Mater. 2023, 35, 2301063 © 2023 Wiley-VCH GmbH2301063 (35 of 39)

 15214095, 2023, 51, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202301063 by U
niversity O

f E
lectronic, W

iley O
nline L

ibrary on [01/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fadma.202301063&mode=


www.advancedsciencenews.com www.advmat.de

[170] X. Hong, Y. Huang, Q. Tian, S. Zhang, C. Liu, L. Wang, K. Zhang, J.
Sun, L. Liao, X. Zou, Adv. Sci. 2022, 9, 2202019.

[171] S. Liu, I. Grinberg, A. M. Rappe, Nature 2016, 534, 360.
[172] Z. W. Wang, X. C. Liu, X. F. Zhou, Y. H. Yuan, K. C. Zhou, D. Zhang,

H. Luo, J. Sun, Adv. Mater. 2022, 34, 2200032.
[173] Y. Zhou, Y. Wang, F. Zhuge, J. Guo, S. Ma, J. Wang, Z. Tang, Y. Li, X.

Miao, Y. He, Y. Chai, Adv. Mater. 2022, 34, 2107754.
[174] Y. Kaneko, Y. Nishitani, M. Ueda, IEEE Trans. Electron Devices 2014,

61, 2827.
[175] M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, S. Datta, pre-

sented at 2017 IEEE Int. Electron Devices Meet. IEDM, IEEE, San
Francisco, CA, USA, 2017.

[176] J. Gao, X. Lian, Z. Chen, S. Shi, E. Li, Y. Wang, T. Jin, H. Chen, L. Liu,
J. Chen, Y. Zhu, W. Chen, Adv. Funct. Mater. 2022, 32, 2110415.

[177] Z. Yin, B. Tian, Q. Zhu, C. Duan, Polymers 2019, 11, 2033.
[178] G. Wu, B. Tian, L. Liu, W. Lv, S. Wu, X. Wang, Y. Chen, J. Li, Z.

Wang, S. Wu, H. Shen, T. Lin, P. Zhou, Q. Liu, C. Duan, S. Zhang, X.
Meng, S. Wu, W. Hu, X. Wang, J. Chu, J. Wang, Nat. Electron. 2020, 3,
43.

[179] Y. Chen, Y. Zhou, F. Zhuge, B. Tian, M. Yan, Y. Li, Y. He, X. S. Miao,
npj 2D Mater. Appl. 2019, 3, 31.

[180] I. H. Im, S. J. Kim, H. W. Jang, Adv. Intell. Syst. 2020, 2, 2000105.
[181] D. H. Lee, G. H. Park, S. H. Kim, J. Y. Park, K. Yang, S. Slesazeck, T.

Mikolajick, M. H. Park, InfoMat 2022, 4, e12380.
[182] C. T. Nelson, P. Gao, J. R. Jokisaari, C. Heikes, C. Adamo, A. Melville,

S.-H. Baek, C. M. Folkman, B. Winchester, Y. Gu, Y. Liu, K. Zhang,
E. Wang, J. Li, L.-Q. Chen, C.-B. Eom, D. G. Schlom, X. Pan, Science
2011, 334, 968.

[183] S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli, S. Fusil, S. Girod,
C. Carretero, K. Garcia, S. Xavier, J. Tomas, L. Bellaiche, M. Bibes, A.
Barthelemy, S. Saighi, V. Garcia, Nat. Commun. 2017, 8, 14736.

[184] C. Ma, Z. Luo, W. C. Huang, L. T. Zhao, Q. L. Chen, Y. Lin, X. Liu, Z.
W. Chen, C. C. Liu, H. Y. Sun, X. Jin, Y. W. Yin, X. G. Li, Nat. Commun.
2020, 11, 1439.

[185] Y. Wan, T. Hu, X. Mao, J. Fu, K. Yuan, Y. Song, X. Gan, X. Xu, M. Xue,
X. Cheng, C. Huang, J. Yang, L. Dai, H. Zeng, E. Kan, Phys. Rev. Lett.
2022, 128, 067601.

[186] S. Mukherjee, E. Koren, Isr. J. Chem. 2022, 62, 202100112.
[187] Y.-T. Huang, N.-K. Chen, Z.-Z. Li, X.-P. Wang, H.-B. Sun, S. Zhang,

X.-B. Li, InfoMat 2022, 4, e12341.
[188] P. Singh, S. Baek, H. H. Yoo, J. Niu, J.-H. Park, S. Lee, ACS Nano

2022, 16, 5418.
[189] S. Baek, H. H. Yoo, J. H. Ju, P. Sriboriboon, P. Singh, J. Niu, J. Park,

C. Shin, Y. Kim, S. Lee, Adv. Sci. 2022, 9, 2200566.
[190] B. Cui, Z. Fan, W. Li, Y. Chen, S. Dong, Z. Tan, S. Cheng, B. Tian, R.

Tao, G. Tian, D. Chen, Z. Hou, M. Qin, M. Zeng, X. Lu, G. Zhou, X.
Gao, J. M. Liu, Nat. Commun. 2022, 13, 1707.

[191] L. Wang, S.-R. Lu, J. Wen, Nanoscale Res. Lett. 2017, 12, 347.
[192] D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, M.

Wuttig, Nat. Mater. 2008, 7, 972.
[193] W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs, L.

Dellmann, E. Eleftheriou, Nat. Commun. 2015, 6, 8181.
[194] M. Suri, O. Bichler, D. Querlioz, B. Traoré, O. Cueto, L. Perniola,

V. Sousa, D. Vuillaume, C. Gamrat, B. DeSalvo, J. Appl. Phys. 2012,
112, 054904.

[195] B. L. Jackson, B. Rajendran, G. S. Corrado, M. Breitwisch, G. W. Burr,
R. Cheek, K. Gopalakrishnan, S. Raoux, C. T. Rettner, A. Padilla, A.
G. Schrott, R. S. Shenoy, B. N. Kurdi, C. H. Lam, D. S. Modha, ACM
J. Emerg. Technol. Comput. Syst. 2013, 9, 1.

[196] X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice,
H. Bhaskaran, Optica 2019, 6, 1.

[197] B. Kersting, V. Ovuka, V. P. Jonnalagadda, M. Sousa, V. Bragaglia, S.
G. Sarwat, M. Le Gallo, M. Salinga, A. Sebastian, Sci. Rep. 2020, 10,
8248.

[198] Q. Wang, B. Liu, Y. Xia, Y. Zheng, R. Huo, Q. Zhang, S. Song, Y.
Cheng, Z. Song, S. Feng, Appl. Phys. Lett. 2015, 107, 222101.

[199] D. Kuzum, R. G. D. Jeyasingh, B. Lee, H.-S. P. Wong, Nano Lett. 2012,
12, 2179.

[200] D.-H. Lim, S. Wu, R. Zhao, J.-H. Lee, H. Jeong, L. Shi, Nat. Commun.
2021, 12, 319.

[201] K. Ishida, I. Byun, I. Nagaoka, K. Fukumitsu, M. Tanaka, S.
Kawakami, T. Tanimoto, T. Ono, J. Kim, K. Inoue, Ieee Micro 2021,
41, 19.

[202] A. Casaburi, R. H. Hadfield, Nat. Electron. 2022, 5, 627.
[203] A. N. McCaughan, V. B. Verma, S. M. Buckley, J. P. Allmaras, A. G.

Kozorezov, A. N. Tait, S. W. Nam, J. M. Shainline, Nat. Electron. 2019,
2, 451.

[204] S. Khan, B. A. Primavera, J. Chiles, A. N. McCaughan, S. M. Buckley,
A. N. Tait, A. Lita, J. Biesecker, A. Fox, D. Olaya, R. P. Mirin, S. W.
Nam, J. M. Shainline, Nat. Electron. 2022, 5, 650.

[205] J. M. Shainline, Appl. Phys. Lett. 2021, 118, 160501.
[206] B. A. Primavera, J. M. Shainline, Appl. Phys. Lett. 2021, 119, 242601.
[207] B. A. Primavera, J. M. Shainline, Front. Neurosci. 2021, 15.
[208] K. Segall, M. Legro, S. Kaplan, O. Svitelskiy, S. Khadka, P. Crotty, D.

Schult, Phys. Rev. E 2017, 95, 032220.
[209] R. Cheng, U. S. Goteti, H. Walker, K. M. Krause, L. Oeding, M. C.

Hamilton, Front. Neurosci. 2021, 15, 765883.
[210] M. Schneider, E. Toomey, G. Rowlands, J. Shainline, P. Tschirhart, K.

Segall, Supercond. Sci. Technol. 2022, 35, 053001.
[211] E. Toomey, K. Segall, K. K. Berggren, Front. Neurosci. 2019, 13, 00933.
[212] G. Milano, G. Pedretti, K. Montano, S. Ricci, S. Hashemkhani, L.

Boarino, D. Ielmini, C. Ricciardi, Nat. Mater. 2022, 21, 195.
[213] M. Onen, B. A. Butters, E. Toomey, T. Gokmen, K. K. Berggren, Nan-

otechnology 2020, 31, 025204.
[214] E. Toomey, K. Segall, M. Castellani, M. Colangelo, N. Lynch, K. K.

Berggren, Nano Lett. 2020, 20, 8059.
[215] I. I. Soloviev, N. V. Klenov, S. V. Bakurskiy, M. Y. Kupriyanov, A. L.

Gudkov, A. S. Sidorenko, Beilstein J. Nanotechnol. 2017, 8, 2689.
[216] E. Toomey, Q.-Y. Zhao, A. N. McCaughan, K. K. Berggren, Phys. Rev.

Appl. 2018, 9, 064021.
[217] M. W. Daniels, A. Madhavan, P. Talatchian, A. Mizrahi, M. D. Stiles,

Phys. Rev. Appl. 2020, 13, 034016.
[218] D. Pinna, F. A. Araujo, J.-V. Kim, V. Cros, D. Querlioz, P. Bessiere, J.

Droulez, J. Grollier, Phys. Rev. Appl. 2018, 9, 064018.
[219] J. Cai, B. Fang, L. Zhang, W. Lv, B. Zhang, T. Zhou, G. Finocchio, Z.

Zeng, Phys. Rev. Appl. 2019, 11, 034015.
[220] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz,

P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S.
Yuasa, M. D. Stiles, J. Grollier, Nature 2017, 547, 428.

[221] M. Romera, P. Talatchian, S. Tsunegi, K. Yakushiji, A. Fukushima, H.
Kubota, S. Yuasa, V. Cros, P. Bortolotti, M. Ernoult, D. Querlioz, J.
Grollier, Nat. Commun. 2022, 13, 883.

[222] M. Riou, J. Torrejon, B. Garitaine, F. Abreu Araujo, P. Bortolotti, V.
Cros, S. Tsunegi, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, D.
Querlioz, M. D. Stiles, J. Grollier, Phys. Rev. Appl. 2019, 12, 024049.

[223] A. Samiee, P. Borulkar, R. F. DeMara, P. Zhao, Y. Bai, IEEE Trans.
Emerg. Top Comput. 2021, 9, 928.

[224] A. Kurenkov, S. DuttaGupta, C. Zhang, S. Fukami, Y. Horio, H.
Ohno, Adv. Mater. 2019, 31, 1900636.

[225] P. Huang, J. Kang, Y. Zhao, S. Chen, R. Han, Z. Zhou, Z. Chen, W.
Ma, M. Li, L. Liu, X. Liu, Adv. Mater. 2016, 28, 9758.
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